Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
22
result(s) for
"Higashi, Tomohito"
Sort by:
Claudin-9 constitutes tight junctions of folliculo-stellate cells in the anterior pituitary gland
2021
The anterior pituitary gland regulates growth, metabolism, and reproduction by secreting hormones. Folliculo-stellate (FS) cells are non-endocrine cells located among hormone-producing cells in the anterior pituitary glands. They form follicular lumens, which are sealed by tight junctions (TJs). Although FS cells are hypothesized to contribute to fine-tuning of endocrine cells, little is known about the exact roles of FS cells. Here, we investigated the molecular composition of TJs in FS cells. We demonstrated that occludin is a good marker for TJs in the pituitary gland and examined the structure of the lumens surrounded by FS cells. We also found that claudin-9 is a major component of TJs in the FS cells. In immunoelectron microscopy, claudin-9 was specifically localized at TJs of the FS cells. The expression of claudin-9 was gradually increased in the pituitary gland after birth, suggesting that claudin-9 is developmentally regulated and performs some specific functions on the paracellular barrier of follicles in the pituitary gland. Furthermore, we found that angulin-1, angulin-2, and tricellulin are localized at the tricellular contacts of the FS cells. Our findings provide a first comprehensive molecular profile of TJs in the FS cells, and may lead us towards unveiling the FS cell functions.
Journal Article
ZO-1 Knockout by TALEN-Mediated Gene Targeting in MDCK Cells: Involvement of ZO-1 in the Regulation of Cytoskeleton and Cell Shape
2014
ZO-1, ZO-2 and ZO-3 are tight junction-associated scaffold proteins that bind to transmembrane proteins of tight junctions and the underlying cytoskeleton. ZO-1 is involved in the regulation of cytoskeletal organization, but its detailed molecular mechanism is less well understood. Gene knockout is an ideal method to investigate the functions of proteins that might have redundant functions such as ZO proteins, when compared with methods such as RNA interference-mediated suppression of gene expression. In this study we applied transcription activator-like effector nucleases (TALENs), a recently developed genome editing method for gene knockout, and established ZO-1 knockout clones in Madin-Darby canine kidney (MDCK) cells. ZO-1 knockout induced striking changes in myosin organization at cell-cell contacts and disrupted the localization of tight junction proteins; these findings were previously unseen in studies of ZO-1 knockdown by RNA interference. Rescue experiments revealed that trace ZO-1 expression reversed these changes while excessive ZO-1 expression induced an intensive zigzag shape of cell-cell junctions. These results suggest a role for ZO-1 in the regulation of cytoskeleton and shape of cell-cell junctions in MDCK cells and indicate the advantage of knockout analysis in cultured cells.
Journal Article
CLDN15 is a novel diagnostic marker for malignant pleural mesothelioma
by
Hasegawa, Takeo
,
Shio, Yutaka
,
Suzuki, Hiroyuki
in
692/4028/67/1641
,
692/53/2421
,
Adenocarcinoma
2021
Malignant mesothelioma is a cancer with a poor survival rate. It is difficult to diagnose mesotheliomas because they show a variety of histological patterns similar to those of various other cancers. However, since currently used positive markers for mesotheliomas may show false positives or false negatives, a novel mesothelial positive marker is required. In the present study, we screened 25 claudins and found that claudin-15 is expressed in the mesothelial cells. We made new rat anti-human claudin-15 (CLDN15) monoclonal antibodies that selectively recognize CLDN15, and investigated whether CLDN15 is a good positive marker for malignant pleural mesotheliomas (MPMs) using MPM tissue samples by immunohistochemistry and semi-quantification of the expression level using an immunoreactive score (IRS) method. Of 42 MPM samples, 83% were positive for CLDN15. The positive ratio was equal to or greater than other positive markers for MPMs including calretinin (81%), WT-1 (50%), and D2-40 (81%). In 50 lung adenocarcinoma sections, four cases were positive for CLDN15 and the specificity (92%) was comparable with other markers (90–100%). Notably, CLDN15 was rarely detected in 24 non-mesothelial tumors in the tissue microarray (12/327 cases). In conclusion, CLDN15 can be used in the clinical setting as a positive marker for MPM diagnosis.
Journal Article
Cell adhesion signals regulate the nuclear receptor activity
by
Endo, Chihiro
,
Sugimoto, Kotaro
,
Kashiwagi, Korehito
in
1-Phosphatidylinositol 3-kinase
,
Adhesion
,
AKT protein
2019
Cell adhesion is essential for proper tissue architecture and function in multicellular organisms. Cell adhesion molecules not only maintain tissue integrity but also possess signaling properties that contribute to diverse cellular events such as cell growth, survival, differentiation, polarity, and migration; however, the underlying molecular basis remains poorly defined. Here we identify that the cell adhesion signal initiated by the tight-junction protein claudin-6 (CLDN6) regulates nuclear receptor activity. We show that CLDN6 recruits and activates Src-family kinases (SFKs) in second extracellular domain-dependent and Y196/200-dependent manners, and SFKs in turn phosphorylate CLDN6 at Y196/200. We demonstrate that the CLDN6/SFK/PI3K/AKT axis targets the AKT phosphorylation sites in the retinoic acid receptor γ (RARγ) and the estrogen receptor α (ERα) and stimulates their activities. Interestingly, these phosphorylation motifs are conserved in 14 of 48 members of human nuclear receptors. We propose that a similar link between diverse cell adhesion and nuclear receptor signalings coordinates a wide variety of physiological and pathological processes.
Journal Article
Claudin‑9 is a novel prognostic biomarker for endometrial cancer
2022
The tight-junction protein claudin-9 (CLDN9) is barely distributed in normal adult tissues but is ectopically expressed in various cancer types. Although multiple databases indicated upregulation of CLDN9 in endometrial cancers at the mRNA level, its protein expression and biological roles remain obscure. In the present study, the prognostic significance of CLDN9 expression in endometrial cancer was evaluated by immunohistochemical staining and semi-quantification using formalin-fixed paraffin-embedded specimens obtained from 248 endometrial carcinoma cases. A total of 43 cases (17.3%) had high CLDN9 expression, whereas 205 cases (82.7%) exhibited low CLDN9 expression. The 5-year disease-specific survival rates in the high and low CLDN9 expression groups were 62.8 and 87.8% (P<0.001), respectively. In addition, multivariate analysis revealed that high CLDN9 expression was an independent prognostic factor (hazard ratio, 4.99; 95% CI, 1.96-12.70; P<0.001). Furthermore, CLDN9 expression was significantly correlated with the expression of CLDN6 (P<0.001), which is the closest CLDN member to CLDN9 and a poor prognostic factor for endometrial carcinoma. The 5-year disease-specific survival rate of cases with CLDN6-high/CLDN9-high, CLDN6-high/CLDN9-low and CLDN6-low/CLDN9-high status was 30.0, 37.5 and 72.7%, respectively, whereas that of CLDN6-low/CLDN9-low was 89.8% (P=0.004). In conclusion, aberrant CLDN9 expression is a predictor of poor prognosis for endometrial cancer and may be utilized in combination with CLDN6 to achieve higher sensitivity.
Journal Article
Anillin regulates epithelial cell mechanics by structuring the medial-apical actomyosin network
2019
Cellular forces sculpt organisms during development, while misregulation of cellular mechanics can promote disease. Here, we investigate how the actomyosin scaffold protein anillin contributes to epithelial mechanics in Xenopus laevis embryos. Increased mechanosensitive recruitment of vinculin to cell–cell junctions when anillin is overexpressed suggested that anillin promotes junctional tension. However, junctional laser ablation unexpectedly showed that junctions recoil faster when anillin is depleted and slower when anillin is overexpressed. Unifying these findings, we demonstrate that anillin regulates medial-apical actomyosin. Medial-apical laser ablation supports the conclusion that that tensile forces are stored across the apical surface of epithelial cells, and anillin promotes the tensile forces stored in this network. Finally, we show that anillin’s effects on cellular mechanics impact tissue-wide mechanics. These results reveal anillin as a key regulator of epithelial mechanics and lay the groundwork for future studies on how anillin may contribute to mechanical events in development and disease.
Journal Article
Deficiency of Angulin-2/ILDR1, a Tricellular Tight Junction-Associated Membrane Protein, Causes Deafness with Cochlear Hair Cell Degeneration in Mice
2015
Tricellular tight junctions seal the extracellular spaces of tricellular contacts, where the vertices of three epithelial cells meet, and are required for the establishment of a strong barrier function of the epithelial cellular sheet. Angulins and tricellulin are known as specific protein components of tricellular tight junctions, where angulins recruit tricellulin. Mutations in the genes encoding angulin-2/ILDR1 and tricellulin have been reported to cause human hereditary deafness DFNB42 and DFNB49, respectively. To investigate the pathogenesis of DFNB42, we analyzed mice with a targeted disruption of Ildr1, which encodes angulin-2/ILDR1. Ildr1 null mice exhibited profound deafness. Hair cells in the cochlea of Ildr1 null mice develop normally, but begin to degenerate by two weeks after birth. Tricellulin localization at tricellular contacts of the organ of Corti in the cochlea was retained in Ildr1 null mice, but its distribution along the depth of tricellular contacts was affected. Interestingly, compensatory tricellular contact localization of angulin-1/LSR was observed in the organ of Corti in Ildr1 null mice although it was hardly detected in the organ of Corti in wild-type mice. The onset of hair cell degeneration in Ildr1 null mice was earlier than that in the reported Tric mutant mice, which mimic one of the tricellulin mutations in DFNB49 deafness. These results indicate that the angulin-2/ILDR1 deficiency causes the postnatal degenerative loss of hair cells in the cochlea, leading to human deafness DFNB42. Our data also suggest that angulin family proteins have distinct functions in addition to their common roles of tricellulin recruitment and that the function of angulin-2/ILDR1 for hearing cannot be substituted by angulin-1/LSR.
Journal Article
A “Tric” to tighten cell-cell junctions in the cochlea for hearing
by
Furuse, Mikio
,
Avraham, Karen B.
,
Lenz, Danielle R.
in
Animals
,
Biomedical research
,
Deafness
2013
Tricellulin is a tricellular tight junction-associated membrane protein that controls movement of solutes at these specialized cell intersections. Mutations in the gene encoding tricellulin, TRIC, lead to nonsyndromic deafness. In this issue of the JCI, Nayak et al. created a gene-targeted knockin mouse in order to mimic the pathology of a human TRIC mutation. Deafness appears to be caused either by an increase in the K+ ion concentration around the basolateral surfaces of the outer hair cells or, alternatively, by an increase in small molecules such as ATP around the hair bundle, leading to cellular dysfunction and degeneration. Furthermore, the mice have features suggestive of syndromic hearing loss, which may have implications for care and treatment of patients harboring TRIC mutations.
Journal Article
Downsloping High-Frequency Hearing Loss Due to Inner Ear Tricellular Tight Junction Disruption by a Novel ILDR1 Mutation in the Ig-Like Domain
by
Furuse, Mikio
,
Kitajiri, Shin-ichiro
,
Chang, Mun Young
in
Alleles
,
Amino Acid Sequence
,
Asian Continental Ancestry Group
2015
The immunoglobulin (Ig)-like domain containing receptor 1 (ILDR1) gene encodes angulin-2/ILDR1, a recently discovered tight junction protein, which forms tricellular tight junction (tTJ) structures with tricellulin and lipolysis-stimulated lipoprotein receptor (LSR) at tricellular contacts (TCs) in the inner ear. Previously reported recessive mutations within ILDR1 have been shown to cause severe to profound nonsyndromic sensorineural hearing loss (SNHL), DFNB42. Whole-exome sequencing of a Korean multiplex family segregating partial deafness identified a novel homozygous ILDR1 variant (p.P69H) within the Ig-like domain. To address the pathogenicity of p.P69H, the angulin-2/ILDR1 p.P69H variant protein, along with the previously reported pathogenic ILDR1 mutations, was expressed in angulin-1/LSR knockdown epithelial cells. Interestingly, partial mislocalization of the p.P69H variant protein and tricellulin at TCs was observed, in contrast to a severe mislocalization and complete failure of tricellulin recruitment of the other reported ILDR1 mutations. Additionally, three-dimensional protein modeling revealed that angulin-2/ILDR1 contributed to tTJ by forming a homo-trimer structure through its Ig-like domain, and the p.P69H variant was predicted to disturb homo-trimer formation. In this study, we propose a possible role of angulin-2/ILDR1 in tTJ formation in the inner ear and a wider audiologic phenotypic spectrum of DFNB42 caused by mutations within ILDR1.
Journal Article