Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
37 result(s) for "Higdon, Melissa M."
Sort by:
Duration of effectiveness of vaccines against SARS-CoV-2 infection and COVID-19 disease: results of a systematic review and meta-regression
Knowing whether COVID-19 vaccine effectiveness wanes is crucial for informing vaccine policy, such as the need for and timing of booster doses. We aimed to systematically review the evidence for the duration of protection of COVID-19 vaccines against various clinical outcomes, and to assess changes in the rates of breakthrough infection caused by the delta variant with increasing time since vaccination. This study was designed as a systematic review and meta-regression. We did a systematic review of preprint and peer-reviewed published article databases from June 17, 2021, to Dec 2, 2021. Randomised controlled trials of COVID-19 vaccine efficacy and observational studies of COVID-19 vaccine effectiveness were eligible. Studies with vaccine efficacy or effectiveness estimates at discrete time intervals of people who had received full vaccination and that met predefined screening criteria underwent full-text review. We used random-effects meta-regression to estimate the average change in vaccine efficacy or effectiveness 1–6 months after full vaccination. Of 13 744 studies screened, 310 underwent full-text review, and 18 studies were included (all studies were carried out before the omicron variant began to circulate widely). Risk of bias, established using the risk of bias 2 tool for randomised controlled trials or the risk of bias in non-randomised studies of interventions tool was low for three studies, moderate for eight studies, and serious for seven studies. We included 78 vaccine-specific vaccine efficacy or effectiveness evaluations (Pfizer–BioNTech-Comirnaty, n=38; Moderna-mRNA-1273, n=23; Janssen-Ad26.COV2.S, n=9; and AstraZeneca-Vaxzevria, n=8). On average, vaccine efficacy or effectiveness against SARS-CoV-2 infection decreased from 1 month to 6 months after full vaccination by 21·0 percentage points (95% CI 13·9–29·8) among people of all ages and 20·7 percentage points (10·2–36·6) among older people (as defined by each study, who were at least 50 years old). For symptomatic COVID-19 disease, vaccine efficacy or effectiveness decreased by 24·9 percentage points (95% CI 13·4–41·6) in people of all ages and 32·0 percentage points (11·0–69·0) in older people. For severe COVID-19 disease, vaccine efficacy or effectiveness decreased by 10·0 percentage points (95% CI 6·1–15·4) in people of all ages and 9·5 percentage points (5·7–14·6) in older people. Most (81%) vaccine efficacy or effectiveness estimates against severe disease remained greater than 70% over time. COVID-19 vaccine efficacy or effectiveness against severe disease remained high, although it did decrease somewhat by 6 months after full vaccination. By contrast, vaccine efficacy or effectiveness against infection and symptomatic disease decreased approximately 20–30 percentage points by 6 months. The decrease in vaccine efficacy or effectiveness is likely caused by, at least in part, waning immunity, although an effect of bias cannot be ruled out. Evaluating vaccine efficacy or effectiveness beyond 6 months will be crucial for updating COVID-19 vaccine policy. Coalition for Epidemic Preparedness Innovations.
Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression
The global surge in the omicron (B.1.1.529) variant has resulted in many individuals with hybrid immunity (immunity developed through a combination of SARS-CoV-2 infection and vaccination). We aimed to systematically review the magnitude and duration of the protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against infection and severe disease caused by the omicron variant. For this systematic review and meta-regression, we searched for cohort, cross-sectional, and case–control studies in MEDLINE, Embase, Web of Science, ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, the WHO COVID-19 database, and Europe PubMed Central from Jan 1, 2020, to June 1, 2022, using keywords related to SARS-CoV-2, reinfection, protective effectiveness, previous infection, presence of antibodies, and hybrid immunity. The main outcomes were the protective effectiveness against reinfection and against hospital admission or severe disease of hybrid immunity, hybrid immunity relative to previous infection alone, hybrid immunity relative to previous vaccination alone, and hybrid immunity relative to hybrid immunity with fewer vaccine doses. Risk of bias was assessed with the Risk of Bias In Non-Randomized Studies of Interventions Tool. We used log-odds random-effects meta-regression to estimate the magnitude of protection at 1-month intervals. This study was registered with PROSPERO (CRD42022318605). 11 studies reporting the protective effectiveness of previous SARS-CoV-2 infection and 15 studies reporting the protective effectiveness of hybrid immunity were included. For previous infection, there were 97 estimates (27 with a moderate risk of bias and 70 with a serious risk of bias). The effectiveness of previous infection against hospital admission or severe disease was 74·6% (95% CI 63·1–83·5) at 12 months. The effectiveness of previous infection against reinfection waned to 24·7% (95% CI 16·4–35·5) at 12 months. For hybrid immunity, there were 153 estimates (78 with a moderate risk of bias and 75 with a serious risk of bias). The effectiveness of hybrid immunity against hospital admission or severe disease was 97·4% (95% CI 91·4–99·2) at 12 months with primary series vaccination and 95·3% (81·9–98·9) at 6 months with the first booster vaccination after the most recent infection or vaccination. Against reinfection, the effectiveness of hybrid immunity following primary series vaccination waned to 41·8% (95% CI 31·5–52·8) at 12 months, while the effectiveness of hybrid immunity following first booster vaccination waned to 46·5% (36·0–57·3) at 6 months. All estimates of protection waned within months against reinfection but remained high and sustained for hospital admission or severe disease. Individuals with hybrid immunity had the highest magnitude and durability of protection, and as a result might be able to extend the period before booster vaccinations are needed compared to individuals who have never been infected. WHO COVID-19 Solidarity Response Fund and the Coalition for Epidemic Preparedness Innovations.
Post-vaccination T cell immunity to omicron
In late 2021, the omicron variant of SARS Coronavirus 2 (SARS-CoV-2) emerged and replaced the previously dominant delta strain. Effectiveness of COVID-19 vaccines against omicron has been challenging to estimate in clinical studies or is not available for all vaccines or populations of interest. T cell function can be predictive of vaccine longevity and effectiveness against disease, likely in a more robust way than antibody neutralization. In this mini review, we summarize the evidence on T cell immunity against omicron including effects of boosters, homologous versus heterologous regimens, hybrid immunity, memory responses and vaccine product. Overall, T cell reactivity in post-vaccine specimens is largely preserved against omicron, indicating that vaccines utilizing the parental antigen continue to be protective against disease caused by the omicron variant.
Global disparities in the introduction, scale-up, and effectiveness evaluation of COVID-19 vaccines
The global response to COVID-19 saw the most rapid and extensive vaccination rollout in history. Yet there were large disparities in the introduction, scale-up, and evaluation of programmes. To systematically quantify these disparities, we generate linkages across public datasets containing country- and territory-level income data, COVID-19 vaccination rates, and COVID-19 vaccine effectiveness (VE). Our results show that, compared with high-income countries, lower-income countries introduced vaccines later, were less likely to achieve key coverage milestones, and were slower to do so where these milestones were achieved. The literature on primary series COVID-19 VE has been dominated by studies of mRNA vaccines from high-income countries, with data for other vaccines and lower-income countries appearing later and in substantially lower quantities. For vaccines with available VE data across multiple income settings (BNT162b2, mRNA-1273, and ChAdOx1-S), our meta-regression highlights robust protection against severe COVID-19, with no significant differences in primary series VE according to country-level income status during the Delta and Omicron periods. Our findings demonstrate the strong protection conferred by COVID-19 vaccines across diverse populations. Nonetheless, our results quantify the stark disparities that pervaded each stage of COVID-19 vaccine implementation, and highlight evidence gaps related to products and platforms being used across much of the globe. The COVID-19 vaccine rollout saw large global disparities in the introduction, scale-up, and evaluation of immunisation programmes. Here, the authors systematically quantify these disparities through linkage of public data sources.
Multiplex bead assays enable integrated serological surveillance and reveal cross-pathogen vulnerabilities in Zambezia Province, Mozambique
Multiplex serological assays simultaneously measure antibodies to multiple antigens, furnishing insights into exposure and susceptibility to several pathogens and cross-pathogen vulnerabilities. Our serosurvey tests dried blood spots from 1292 individuals for IgG antibodies to 35 antigens from 18 pathogens using a multiplex bead assay for vaccine preventable diseases, malaria, SARS-CoV-2, neglected tropical diseases, and enteric pathogens in Mozambique. We produce pathogen-specific seroprevalence estimates and age-seroprevalence curves and identify spatial differences in seroprevalence. Rural clusters have higher odds of seropositivity to most NTDs neglected tropical diseases, Plasmodium falciparum malaria, and enteric pathogens, but lower odds of seropositivity to SARS-CoV-2 and vaccine preventable diseases compared to urban clusters. This co-occurrence identifies clusters with high vulnerability to multiple pathogens. We identify a candidate group of antigens that are correlated with high overall vulnerability. Our results demonstrate a role for multiplex serology in integrated disease surveillance to guide control strategies for individual and co-endemic pathogens. This study used multiplex serology to monitor multiple diseases simultaneously from a single serosurvey. Seroprevalence estimates were performed for five disease categories in Zambezia Province, Mozambique.
Pneumococcal colonization prevalence and density among Thai children with severe pneumonia and community controls
Pneumococcal colonization prevalence and colonization density, which has been associated with invasive disease, can offer insight into local pneumococcal ecology and help inform vaccine policy discussions. The Pneumonia Etiology Research for Child Health Project (PERCH), a multi-country case-control study, evaluated the etiology of hospitalized cases of severe and very severe pneumonia among children aged 1-59 months. The PERCH Thailand site enrolled children during January 2012-February 2014. We determined pneumococcal colonization prevalence and density, and serotype distribution of colonizing isolates. We enrolled 224 severe/very severe pneumonia cases and 659 community controls in Thailand. Compared to controls, cases had lower colonization prevalence (54.5% vs. 62.5%, p = 0.12) and lower median colonization density (42.1 vs. 210.2 x 103 copies/mL, p <0.0001); 42% of cases had documented antibiotic pretreatment vs. 0.8% of controls. In no sub-group of assessed cases did pneumococcal colonization density exceed the median for controls, including cases with no prior antibiotics (63.9x103 copies/mL), with consolidation on chest x-ray (76.5x103 copies/mL) or with pneumococcus detected in whole blood by PCR (9.3x103 copies/mL). Serotype distribution was similar among cases and controls, and a high percentage of colonizing isolates from cases and controls were serotypes included in PCV10 (70.0% and 61.8%, respectively) and PCV13 (76.7% and 67.9%, respectively). Pneumococcal colonization is common among children aged <5 years in Thailand. However, colonization density was not higher among children with severe pneumonia compared to controls. These results can inform discussions about PCV introduction and provide baseline data to monitor PCV impact after introduction in Thailand.
Systematic review and meta-analysis of the factors affecting waning of post-vaccination neutralizing antibody responses against SARS-CoV-2
Mass COVID-19 vaccination and continued introduction of new SARS-CoV-2 variants increased prevalence of hybrid immunity at various stages of waning protection. We systematically reviewed waning of post-vaccination neutralizing antibody titers in different immunological settings to investigate differences. We searched published and pre-print studies providing post-vaccination neutralizing antibody responses against the Index strain or Omicron BA.1. We used random effects meta-regression to estimate fold-reduction from months 1 to 6 post last dose by primary vs booster regimen and infection-naïve vs hybrid-immune cohorts. Among 26 eligible studies, 65 cohorts (range 3–21 per stratum) were identified. Month-1 titers varied widely across studies within each cohort and by vaccine platform, number of doses and number of prior infections. In infection-naïve cohorts, the Index strain waned 5.1-fold (95%CI: 3.4–7.8; n  = 19 cohorts) post-primary regimen and 3.8-fold (95%CI: 2.4–5.9; n  = 21) post-booster from months 1 to 6, and against Omicron BA.1 waned 5.9-fold (95%CI: 3.8–9.0; n  = 16) post-booster; Omicron BA.1 titers post-primary were too low to assess. In hybrid-immune, post-primary cohorts, titers waned 3.7-fold (95%CI: 1.7–7.9; n  = 8) against the Index strain and 5.0-fold (95%CI: 1.1–21.8; n  = 6) against Omicron BA.1; post-booster studies of hybrid-immune cohorts were too few ( n  = 3 cohorts each strain) to assess. Waning was similar across vaccination regimen and prior-infection status strata but was faster for Omicron BA.1 than Index strains, therefore, more recent sub-variants should be monitored. Wide differences in peak titers by vaccine platform and prior infection status mean titers drop to non-protective levels sooner in some instances, which may affect policy.
Systematic review of primary and booster COVID-19 sera neutralizing ability against SARS-CoV-2 omicron variant
Virus neutralization data using post-vaccination sera are an important tool in informing vaccine use policy decisions, however, they often pose interpretive challenges. We systematically reviewed the pre-print and published literature for neutralization studies against Omicron using sera collected after both primary and booster vaccination. We found a high proportion of post-primary vaccination sera were not responding against Omicron but boosting increased both neutralizing activity and percent of responding sera. We recommend reporting percent of responders alongside neutralization data to portray vaccine neutralization ability more accurately.
Evaluating the Quality of Studies Assessing COVID-19 Vaccine Neutralizing Antibody Immunogenicity
Objective: COVID-19 vaccine-neutralizing antibodies provide early data on potential vaccine effectiveness, but their usefulness depends on study reliability and reporting quality. Methods: We systematically evaluated 50 published post-vaccination neutralizing antibody studies for key parameters that determine study and data quality regarding sample size, SARS-CoV-2 infection, vaccination regimen, sample collection period, demographic characterization, clinical characterization, experimental protocol, live virus and pseudo-virus details, assay standardization, and data reporting. Each category was scored from very high to low or unclear quality, with the lowest score determining the overall study quality score. Results: None of the studies attained an overall high or very high score, 8% (n = 4) attained moderate, 42% (n = 21) low, and 50% (n = 25) unclear. The categories with the fewest studies assessed as ≥ high quality were SARS-CoV-2 infection (42%), sample size (30%), and assay standardization (14%). Overall quality was similar over time. No association between journal impact factor and quality score was found. Conclusions: We found that reporting in neutralization studies is widely incomplete, limiting their usefulness for downstream analyses.