Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
484
result(s) for
"Hill, Andrew F."
Sort by:
Therapeutically harnessing extracellular vesicles
2022
The field of extracellular vesicle (EV) research has developed rapidly over the last decade from the study of fundamental biology to a subject of significant clinical relevance. The potential of harnessing EVs in the diagnosis and treatment of diseases — including cancer and neurological and cardiovascular disorders — is now being recognized. Accordingly, the applications of EVs as therapeutic targets, biomarkers, novel drug delivery agents and standalone therapeutics are being actively explored. This Review provides a brief overview of the characteristics and physiological functions of the various classes of EV, focusing on their association with disease and emerging strategies for their therapeutic exploitation.The past decade has witnessed rapid growth in the field of extracellular vesicle (EV) research, and the potential of harnessing EVs in the treatment and diagnosis of diseases is now well recognized. Here, Cheng and Hill provide an overview of the physiological and pathological roles of EVs, discuss how they could be therapeutically exploited and consider the associated challenges.
Journal Article
Characterization and deep sequencing analysis of exosomal and non-exosomal miRNA in human urine
by
Scicluna, Benjamin J.
,
Cheng, Lesley
,
Sun, Xin
in
Adult
,
Biomarkers - urine
,
Blotting, Western
2014
Micro RNAs (miRNAs) have been shown to circulate in biological fluids and are enclosed in vesicles such as exosomes; they are present in urine and represent a noninvasive methodology to detect biomarkers for diagnostic testing. The low abundance of RNA in urine creates difficulties in its isolation, of which exosomal miRNA is a small fraction, making downstream RNA assays challenging. Here, we investigate methods to maximize exosomal isolation and RNA yield for next-generation deep sequencing. Upon characterizing exosomal proteins and total RNA content in urine, several commercially available kits were tested for their RNA extraction efficiency. We subsequently used the methods with the highest miRNA content to profile baseline miRNA expression using next-generation deep sequencing. Comparisons of miRNA profiles were also made with exosomes isolated by differential ultracentrifugation methodology and a commercially available column-based protocol. Overall, miRNAs were found to be significantly enriched and intact in urine-derived exosomes compared with cell-free urine. The presence of other noncoding RNAs such as small nuclear and small nucleolar RNA in the exosomes, in addition to coding sequences related to kidney and bladder conditions, was also detected. Our study extensively characterizes the RNA content of exosomes isolated from urine, providing the potential to identify miRNA biomarkers in human urine.
Journal Article
Malaria parasite DNA-harbouring vesicles activate cytosolic immune sensors
by
Penington, Jocelyn Sietsma
,
Gerlic, Motti
,
Bowie, Andrew G.
in
631/250/262/2106
,
631/326/417/2546
,
Cell Line
2017
STING is an innate immune cytosolic adaptor for DNA sensors that engage malaria parasite (
Plasmodium falciparum
) or other pathogen DNA. As
P. falciparum
infects red blood cells and not leukocytes, how parasite DNA reaches such host cytosolic DNA sensors in immune cells is unclear. Here we show that malaria parasites inside red blood cells can engage host cytosolic innate immune cell receptors from a distance by secreting extracellular vesicles (EV) containing parasitic small RNA and genomic DNA. Upon internalization of DNA-harboring EVs by human monocytes,
P. falciparum
DNA is released within the host cell cytosol, leading to STING-dependent DNA sensing. STING subsequently activates the kinase TBK1, which phosphorylates the transcription factor IRF3, causing IRF3 to translocate to the nucleus and induce STING-dependent gene expression. This DNA-sensing pathway may be an important decoy mechanism to promote
P. falciparum
virulence and thereby may affect future strategies to treat malaria.
STING is an intracellular DNA sensor that can alter response to infection, but in the case of malaria it is unclear how parasite DNA in red blood cells (RBCs) reaches DNA sensors in immune cells. Here the authors show that STING in human monocytes can sense
P. falciparum
nucleic acids transported from infected RBCs via parasite extracellular vesicles.
Journal Article
Helicobacter pylori Outer Membrane Vesicle Size Determines Their Mechanisms of Host Cell Entry and Protein Content
by
Ferrero, Richard L.
,
Kaparakis-Liaskos, Maria
,
Bitto, Natalie J.
in
Bacteria
,
bacterial membrane vesicles
,
Caveolin
2018
Gram-negative pathogens ubiquitously shed outer membrane vesicles (OMVs) that play a central role in initiating and regulating pathogenesis in the host. Due to their highly inflammatory nature, OMVs are extensively being examined for their role in mediating disease in addition to their applications in innovative vaccines. A key mechanism whereby OMVs mediate inflammation and disease progression is dependent on their ability to enter host cells. Currently, the role of OMV size on determining their mechanism of cellular entry and their protein composition remains unknown. In this study, we examined the mechanisms whereby OMV size regulates their mode of entry into epithelial cells, in addition to their protein cargo and composition. We identified that a heterogeneous sized population of
OMVs entered epithelial cells
macropinocytosis, clathrin, and caveolin-dependent endocytosis. However, smaller OMVs ranging from 20 to 100 nm in size preferentially entered host cells
caveolin-mediated endocytosis. Whereas larger OMVs ranging between 90 and 450 nm in size entered host epithelial cells
macropinocytosis and endocytosis. Most importantly, we identified the previously unknown contribution that OMV size has on determining their protein content, as fewer and less diverse bacterial proteins were contained within small OMVs compared to larger OMVs. Collectively, these findings identify the importance of OMV size in determining the mechanisms of OMV entry into host cells, in addition to regulating their protein cargo, composition, and subsequent immunogenicity. These findings have significant implications in broadening our understanding of the bacterial regulation of virulence determinants and immunogenic proteins associated with OMVs, their role in mediating pathogenesis and in refining the design and development of OMV-based vaccines.
Journal Article
Techniques used for the isolation and characterization of extracellular vesicles: results of a worldwide survey
by
Witwer, Kenneth W.
,
Gardiner, Chris
,
Hill, Andrew F.
in
Body fluids
,
Cell culture
,
Cell signaling
2016
Extracellular vesicles (EVs) represent an important mode of intercellular communication. Research in this field has grown rapidly in the last few years, and there is a plethora of techniques for the isolation and characterization of EVs, many of which are poorly standardized. EVs are heterogeneous in size, origin and molecular constituents, with considerable overlap in size and phenotype between different populations of EVs. Little is known about current practices for the isolation, purification and characterization of EVs. We report here the first large, detailed survey of current worldwide practices for the isolation and characterization of EVs. Conditioned cell culture media was the most widely used material (83%). Ultracentrifugation remains the most commonly used isolation method (81%) with 59% of respondents use a combination of methods. Only 9% of respondents used only 1 characterization method, with others using 2 or more methods. Sample volume, sample type and downstream application all influenced the isolation and characterization techniques employed.
Journal Article
Intercellular propagated misfolding of wild-type Cu/Zn superoxide dismutase occurs via exosome-dependent and -independent mechanisms
by
Zeineddine, Rafaa
,
Cashman, Neil R.
,
Turner, Bradley J.
in
Amyotrophic lateral sclerosis
,
Amyotrophic Lateral Sclerosis - metabolism
,
Amyotrophic Lateral Sclerosis - physiopathology
2014
Amyotrophic lateral sclerosis (ALS) is predominantly sporadic, but associated with heritable genetic mutations in 5–10% of cases, including those in Cu/Zn superoxide dismutase (SOD1). We previously showed that misfolding of SOD1 can be transmitted to endogenous human wild-type SOD1 (HuWtSOD1) in an intracellular compartment. Using NSC-34 motor neuron-like cells, we now demonstrate that misfolded mutant and HuWtSOD1 can traverse between cells via two nonexclusive mechanisms: protein aggregates released from dying cells and taken up by macropinocytosis, and exosomes secreted from living cells. Furthermore, once HuWtSOD1 propagation has been established, misfolding of HuWtSOD1 can be efficiently and repeatedly propagated between HEK293 cell cultures via conditioned media over multiple passages, and to cultured mouse primary spinal cord cells transgenically expressing HuWtSOD1, but not to cells derived from nontransgenic littermates. Conditioned media transmission of HuWtSOD1 misfolding in HEK293 cells is blocked by HuWtSOD1 siRNA knockdown, consistent with human SOD1 being a substrate for conversion, and attenuated by ultracentrifugation or incubation with SOD1 misfolding-specific antibodies, indicating a relatively massive transmission particle which possesses antibody-accessible SOD1. Finally, misfolded and protease-sensitive HuWtSOD1 comprises up to 4% of total SOD1 in spinal cords of patients with sporadic ALS (SALS). Propagation of HuWtSOD1 misfolding, and its subsequent cell-to-cell transmission, is thus a candidate process for the molecular pathogenesis of SALS, which may provide novel treatment and biomarker targets for this devastating disease.
Journal Article
Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood
by
Scicluna, Benjamin J.
,
Cheng, Lesley
,
Sharples, Robyn A.
in
Alzheimer's disease
,
Biomarkers
,
Cancer
2014
microRNA (miRNA) are small non-coding RNA species that are transcriptionally processed in the host cell and released extracellularly into the bloodstream. Normally involved in post-transcriptional gene silencing, the deregulation of miRNA has been shown to influence pathogenesis of a number of diseases.
Next-generation deep sequencing (NGS) has provided the ability to profile miRNA in biological fluids making this approach a viable screening tool to detect miRNA biomarkers. However, collection and handling procedures of blood needs to be greatly improved for miRNA analysis in order to reliably detect differences between healthy and disease patients. Furthermore, ribonucleases present in blood can degrade RNA upon collection rendering extracellular miRNA at risk of degradation. These factors have consequently decreased sensitivity and specificity of miRNA biomarker assays.
Here, we use NGS to profile miRNA in various blood components and identify differences in profiles within peripheral blood compared to cell-free plasma or serum and extracellular vesicles known as exosomes. We also analyse and compare the miRNA content in exosomes prepared by ultracentrifugation methods and commercial exosome isolation kits including treating samples with RNaseA.
This study demonstrates that exosomal RNA is protected by RNaseA treatment and that exosomes provide a consistent source of miRNA for disease biomarker detection.
Journal Article
MYRF Is a Membrane-Associated Transcription Factor That Autoproteolytically Cleaves to Directly Activate Myelin Genes
2013
The myelination of axons is a crucial step during vertebrate central nervous system (CNS) development, allowing for rapid and energy efficient saltatory conduction of nerve impulses. Accordingly, the differentiation of oligodendrocytes, the myelinating cells of the CNS, and their expression of myelin genes are under tight transcriptional control. We previously identified a putative transcription factor, Myelin Regulatory Factor (Myrf), as being vital for CNS myelination. Myrf is required for the generation of CNS myelination during development and also for its maintenance in the adult. It has been controversial, however, whether Myrf directly regulates transcription, with reports of a transmembrane domain and lack of nuclear localization. Here we show that Myrf is a membrane-associated transcription factor that undergoes an activating proteolytic cleavage to separate its transmembrane domain-containing C-terminal region from a nuclear-targeted N-terminal region. Unexpectedly, this cleavage event occurs via a protein domain related to the autoproteolytic intramolecular chaperone domain of the bacteriophage tail spike proteins, the first time this domain has been found to play a role in eukaryotic proteins. Using ChIP-Seq we show that the N-terminal cleavage product directly binds the enhancer regions of oligodendrocyte-specific and myelin genes. This binding occurs via a defined DNA-binding consensus sequence and strongly promotes the expression of target genes. These findings identify Myrf as a novel example of a membrane-associated transcription factor and provide a direct molecular mechanism for its regulation of oligodendrocyte differentiation and CNS myelination.
Journal Article
Extracellular vesicles with diagnostic and therapeutic potential for prion diseases
by
Khadka, Arun
,
Spiers, Jereme G.
,
Cheng, Lesley
in
biomarkers
,
Biomedical and Life Sciences
,
Biomedicine
2023
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrP
C
) to the neurotoxic pathogenic form (PrP
TSE
) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrP
C
is transformed to the misfolded, aggregation-prone and pathogenic PrP
TSE
remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrP
TSE
accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrP
TSE
transmission in PrD. This review will comprehensively discuss PrP
TSE
transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Journal Article
HIV disease, metabolic dysfunction and atherosclerosis: A three year prospective study
by
Downs, Catherine
,
Pushkarsky, Tatiana
,
Mukhamedova, Nigora
in
Abnormalities
,
Adult
,
Anti-Retroviral Agents - administration & dosage
2019
HIV infection is known to be associated with cardiometabolic abnormalities; here we investigated the progression and causes of these abnormalities. Three groups of participants were recruited: HIV-negative subjects and two groups of treatment-naïve HIV-positive subjects, one group initiating antiretroviral treatment, the other remaining untreated. Intima-media thickness (cIMT) increased in HIV-positive untreated group compared to HIV-negative group, but treatment mitigated the difference. We found no increase in diabetes-related metabolic markers or in the level of inflammation in any of the groups. Total cholesterol, low density lipoprotein cholesterol and apoB levels were lower in HIV-positive groups, while triglyceride and Lp(a) levels did not differ between the groups. We found a statistically significant negative association between viral load and plasma levels of total cholesterol, LDL cholesterol, HDL cholesterol, apoA-I and apoB. HIV-positive patients had hypoalphalipoproteinemia at baseline, and we found a redistribution of sub-populations of high density lipoprotein (HDL) particles with increased proportion of smaller HDL in HIV-positive untreated patients, which may result from increased levels of plasma cholesteryl ester transfer protein in this group. HDL functionality declined in the HIV-negative and HIV-positive untreated groups, but not in HIV-positive treated group. We also found differences between HIV-positive and negative groups in plasma abundance of several microRNAs involved in lipid metabolism. Our data support a hypothesis that cardiometabolic abnormalities in HIV infection are caused by HIV and that antiretroviral treatment itself does not influence key cardiometabolic parameters, but mitigates those affected by HIV.
Journal Article