Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
40 result(s) for "Hillson, Simon"
Sort by:
Tooth development in human evolution and bioarchaeology
\"Human children grow at a uniquely slow pace by comparison with other mammals. When and where did this schedule evolve? Have technological advances, farming and cities had any effect upon it? Addressing these and other key questions in palaeoanthropology and bioarchaeology, Simon Hillson examines the unique role of teeth in preserving detailed microscopic records of development throughout childhood and into adulthood. The text critically reviews theory, assumptions, methods and literature, providing the dental histology background to anthropological studies of both growth rate and growth disruption. Chapters also examine existing studies of growth rate in the context of human evolution and primate development more generally, together with implications for life history. The final chapters consider how defects in the tooth development sequence shed light on the consequences of biological and social transitions, contributing to our understanding of the evolution of modern human development and cognition\"-- Provided by publisher.
A dental revolution: The association between occlusion and chewing behaviour
Dentistry is confronted with the functional and aesthetic consequences that result from an increased prevalence of misaligned and discrepant dental occlusal relations in modern industrialised societies. Previous studies have indicated that a reduction in jaw size in response to softer and more heavily processed foods during and following the Industrial Revolution (1,700 CE to present) was an important factor in increased levels of poor dental occlusion. The functional demands placed on the masticatory system play a crucial role in jaw ontogenetic development; however, the way in which chewing behaviours changed in response to the consumption of softer foods during this period remains poorly understood. Here we show that eating more heavily processed food has radically transformed occlusal power stroke kinematics. Results of virtual 3D analysis of the dental macrowear patterns of molars in 104 individuals dating to the Industrial Revolution (1,700–1,900 CE), and 130 of their medieval and early post-medieval antecedents (1,100–1,700 CE) revealed changes in masticatory behaviour that occurred during the early stages of the transition towards eating more heavily processed foods. The industrial-era groups examined chewed with a reduced transverse component of jaw movement. These results show a diminished sequence of occlusal contacts indicating that a dental revolution has taken place in modern times, involving a dramatic shift in the way in which teeth occlude and wear during mastication. Molar macrowear suggests a close connection between progressive changes in chewing since the industrialization of food production and an increase in the prevalence of poor dental occlusion in modern societies.
The earliest evidence for anatomically modern humans in northwestern Europe
Early arrivals in Europe Anatomically modern humans are thought to have arrived in Europe 44,000–42,000 years ago. Physical evidence for early humans is scarce, and these dates are based largely on studies of stone tool assemblages. Two papers published this week use the latest radiocarbon dating and morphological analysis techniques to reassess museum hominid samples. Higham et al . examine a human maxilla from the Aurignacian site at Kent's Cavern in the United Kingdom, discovered in 1927 and previously dated at around 35,000 years old, and arrive at an age of 44,200–41,500 years. The dental morphology of the jawbone indicates that its attribution as early human, rather than Neanderthal, is reliable. Benazzi et al . reanalyse two teeth from the Uluzzian site Grotta del Cavallo in southern Italy and conclude that they are definitively modern, not Neanderthal, and date to 45,000–43,000 years old. A further conclusion from this work is that the Uluzzian culture of southern Europe — always found stratigraphically below the Aurignacian signature culture of the modern humans — may represent the earliest modern humans in Europe rather than the last Neanderthals. The earliest anatomically modern humans in Europe are thought to have appeared around 43,000–42,000 calendar years before present (43–42 kyr cal bp ), by association with Aurignacian sites and lithic assemblages assumed to have been made by modern humans rather than by Neanderthals. However, the actual physical evidence for modern humans is extremely rare, and direct dates reach no farther back than about 41–39 kyr cal bp , leaving a gap. Here we show, using stratigraphic, chronological and archaeological data, that a fragment of human maxilla from the Kent’s Cavern site, UK, dates to the earlier period. The maxilla (KC4), which was excavated in 1927, was initially diagnosed as Upper Palaeolithic modern human 1 . In 1989, it was directly radiocarbon dated by accelerator mass spectrometry to 36.4–34.7 kyr cal bp 2 . Using a Bayesian analysis of new ultrafiltered bone collagen dates in an ordered stratigraphic sequence at the site, we show that this date is a considerable underestimate. Instead, KC4 dates to 44.2–41.5 kyr cal bp . This makes it older than any other equivalently dated modern human specimen and directly contemporary with the latest European Neanderthals, thus making its taxonomic attribution crucial. We also show that in 13 dental traits KC4 possesses modern human rather than Neanderthal characteristics; three other traits show Neanderthal affinities and a further seven are ambiguous. KC4 therefore represents the oldest known anatomically modern human fossil in northwestern Europe, fills a key gap between the earliest dated Aurignacian remains and the earliest human skeletal remains, and demonstrates the wide and rapid dispersal of early modern humans across Europe more than 40 kyr ago.
Bioarchaeology of Neolithic Çatalhöyük: Lives and Lifestyles of an Early Farming Society in Transition
The bioarchaeological record of human remains viewed in the context of ecology, subsistence, and living circumstances provides a fundamental source for documenting and interpreting the impact of plant and animal domestication in the late Pleistocene and early to middle Holocene. For Western Asia, Çatalhöyük (7100-5950 cal BC) in central Anatolia, presents a comprehensive and contextualized setting for interpreting living circumstances in this highly dynamic period of human history. This article provides an overview of the bioarchaeology of Çatalhöyük in order to characterize patterns of life conditions at the community level, addressing the question, What were the implications of domestication and agricultural intensification, increasing sedentism, and population growth for health and lifestyle in this early farming community? This study employs demography, biogeochemistry, biodistance analysis, biomechanics, growth and development, and paleopathology in order to identify and interpret spatial and temporal patterns of health and lifestyle under circumstances of rapid population growth and aggregation and changing patterns of acquiring food and other resources. The record suggests that the rapid growth in population size was fueled by increased fertility and birthrate. Although the household was likely the focus of economic activity, our analysis suggests that individuals interred in houses were not necessarily biologically related. Predictably, the community employed resource extraction practices involving increased mobility. Although oral and skeletal indicators suggest some evidence of compromised health (e.g. elevated subadult infection, dental caries), growth and development of juveniles and adult body size and stature indicate adjustments to local circumstances.
Enamel Structure and Properties
This chapter provides an introduction to the properties of enamel and the way in which its formation imparts a prismatic structure to the tissue. It also discusses the mechanisms of crown formation, including the appearance and periodicity of the incremental structures of enamel. Finally, a new histological study illustrates how these structures can be used to investigate the timing of crown formation in five individuals from post‐medieval London. The results provide new data on cusp and crown formation, including details of the sequence and timing of crown initiation.