Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
97
result(s) for
"Hinkel, Jochen"
Sort by:
A global analysis of subsidence, relative sea-level change and coastal flood exposure
by
Vafeidis, Athanasios T
,
Lincke, Daniel
,
Fang Jiayi
in
Climate change
,
Coastal climates
,
Coastal effects
2021
Climate-induced sea-level rise and vertical land movements, including natural and human-induced subsidence in sedimentary coastal lowlands, combine to change relative sea levels around the world’s coasts. Although this affects local rates of sea-level rise, assessments of the coastal impacts of subsidence are lacking on a global scale. Here, we quantify global-mean relative sea-level rise to be 2.6 mm yr−1 over the past two decades. However, as coastal inhabitants are preferentially located in subsiding locations, they experience an average relative sea-level rise up to four times faster at 7.8 to 9.9 mm yr−1. These results indicate that the impacts and adaptation needs are much higher than reported global sea-level rise measurements suggest. In particular, human-induced subsidence in and surrounding coastal cities can be rapidly reduced with appropriate policy for groundwater utilization and drainage. Such policy would offer substantial and rapid benefits to reduce growth of coastal flood exposure due to relative sea-level rise.Land subsidence and uplift influence the rate of sea-level rise. Most coastal populations live in subsiding areas and experience average rates of relative sea-level rise three to four times faster than due to climate change alone, indicating the need for policy to address subsidence.
Journal Article
Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century
by
Ranasinghe, Roshanka
,
Lincke, Daniel
,
Hinkel, Jochen
in
704/106/694/2739
,
704/106/694/2786
,
704/829/2737
2020
Global models of tide, storm surge, and wave setup are used to obtain projections of episodic coastal flooding over the coming century. The models are extensively validated against tide gauge data and the impact of uncertainties and assumptions on projections estimated in detail. Global “hotspots” where there is projected to be a significant change in episodic flooding by the end of the century are identified and found to be mostly concentrated in north western Europe and Asia. Results show that for the case of, no coastal protection or adaptation, and a mean RCP8.5 scenario, there will be an increase of 48% of the world’s land area, 52% of the global population and 46% of global assets at risk of flooding by 2100. A total of 68% of the global coastal area flooded will be caused by tide and storm events with 32% due to projected regional sea level rise.
Journal Article
Economic motivation for raising coastal flood defenses in Europe
by
Hinkel, Jochen
,
Mentaschi, Lorenzo
,
Ward, Philip J.
in
704/4111
,
706/689/694/2739
,
706/689/694/682
2020
Extreme sea levels (ESLs) in Europe could rise by as much as one metre or more by the end of this century due to climate change. This poses significant challenges to safeguard coastal communities. Here we present a comprehensive analysis of economically efficient protection scenarios along Europe’s coastlines during the present century. We employ a probabilistic framework that integrates dynamic simulations of all ESL components and flood inundation, impact modelling and a cost-benefit analysis of raising dykes. We find that at least 83% of flood damages in Europe could be avoided by elevating dykes in an economically efficient way along 23.7%-32.1% of Europe’s coastline, specifically where high value conurbations exist. The European mean benefit to cost ratio of the investments varies from 8.3 to 14.9 while at country level this ranges between 1.6 and 34.3, with higher efficiencies for a scenario with high-end greenhouse gas emissions and strong socio-economic growth.
There lacks a European cost-benefit analysis of possible protective measures against rising seas. Here the authors used a probabilistic data and modeling framework to estimate costs and benefits of coastal protection measures and found that at least 83% of flood damages could be avoided by dyke improvements along a third of the European coastline.
Journal Article
Future urban development exacerbates coastal exposure in the Mediterranean
2020
Changes in the spatial patterns and rate of urban development will be one of the main determinants of future coastal flood risk. Existing spatial projections of urban extent are, however, often available at coarse spatial resolutions, local geographical scales or for short time horizons, which limits their suitability for broad-scale coastal flood impact assessments. Here, we present a new set of spatially explicit projections of urban extent for ten countries in the Mediterranean, consistent with the Shared Socioeconomic Pathways (SSPs). To model plausible future urban development, we develop an Urban Change Model, which uses input variables such as elevation, population density or road network and an artificial neural network to project urban development on a regional scale. The developed future projections for the five SSPs indicate that accounting for the spatial patterns of urban development can lead to significant differences in the assessment of future coastal urban exposure. The increase in exposure in the Extended Low Elevation Coastal Zone (E-LECZ = area below 20 m of elevation) until 2100 can vary, by up to 104%, depending on the urban development scenario chosen. This finding highlights that accounting for urban development in long-term adaptation planning, e.g. in the form of land-use planning, can be an effective measure for reducing future coastal flood risk on a regional scale.
Journal Article
What drives relocation policies in the Maldives?
2020
The predominant responses to rising sea levels are in situ adaptations. However, increasing rates of sea-level rise will render ex situ adaptations—in the form of relocations—inevitable in some low-lying coastal zones. Particularly small island states like the Maldives face this significant adaptation challenge. Here, government action is necessary to move vulnerable communities out of flood-prone areas. Yet, little empirical knowledge exists about the governance of relocations. While the literature often highlights risks and benefits of relocations, it remains unclear how governments organized relocations and what drove relocation policy. Therefore, we examined Maldivian relocation policies from 1968 to 2018 to explain government support of relocations. For this, we used a qualitative research design and extended the multiple streams approach with the theoretical lens of historical institutionalism. To gather data, we conducted semi-structured interviews (n = 23) with relocation policy experts and locals affected by relocations. Interview data was complemented with a desk review of relevant laws, historical records, and policy documents. We find 29 completed and 25 failed cases of relocations in the 50-year period. Key drivers of relocation policies are focusing events, socioeconomic development, and institutionalized island autonomy. We find that relocations were predominantly initiated as means to facilitate economic development, not as a response to rising seas or coastal risk. With current rapid economic development and strengthened democratic institutions, relocations are not considered as a policy option anymore. We conclude that implementing relocations proactively will face significant barriers in the future, which highlights the urgency of successful in situ adaptations in the Maldives.
Journal Article
The macroeconomic effects of adapting to high-end sea-level rise via protection and migration
by
Bachner, Gabriel
,
Lincke, Daniel
,
Hinkel, Jochen
in
706/689/159
,
706/689/694/2739
,
Adaptation
2022
Climate change-induced sea level rise (SLR) is projected to be substantial, triggering human adaptation responses, including increasing protection and out-migration from coastlines. Yet, in macroeconomic assessments of SLR the latter option has been given little attention. We fill this gap by providing a global analysis of the macroeconomic effects of adaptation to SLR, including coastal migration, focusing on the higher end of SLR projections until 2050. We find that when adapting simultaneously via protection and coastal migration, macroeconomic costs can be lower than with protection alone. For some developing regions coastal migration is even less costly (in GDP) than protection. Additionally, we find that future macroeconomic costs are dominated by accumulated macroeconomic effects over time, rather than by future direct damages, implying the need for immediate adaptation. Finally, we demonstrate the importance of including autonomous adaptation in the reference scenario of economic assessment studies to avoid overestimation of adaptation benefits.
The authors calculated the economy-wide costs of sea level rise and possible adaptation options. Protection clearly pays off and when combining protection and coastal migration, costs can be brought down further, yet, residual damage costs are large.
Journal Article
Risks on global financial stability induced by climate change: the case of flood risks
2021
There is increasing concern among financial regulators that changes in the distribution and frequency of extreme weather events induced by climate change could pose a threat to global financial stability. We assess this risk, for the case of floods, by developing a simple model of the propagation of climate-induced shocks through financial networks. We show that the magnitude of global risks is determined by the interplay between the exposure of countries to climate-related natural hazards and their financial leverage. Climate change induces a shift in the distribution of impacts towards high-income countries and thus larger amplification of impacts as the financial sectors of high-income countries are more leveraged. Conversely, high-income countries are more exposed to financial shocks. In high-end climate scenarios, this could lead to the emergence of systemic risk as total impacts become commensurate with the capital of the banking sectors of countries that are hubs of the global financial network. Adaptation policy, or the lack thereof, appears to be one of the key risk drivers as it determines the future exposure of high-income countries. This implies in particular that the avoided costs in terms of financial stability should be weighted in as benefits of adaptation policy.
Journal Article
Mediterranean UNESCO World Heritage at risk from coastal flooding and erosion due to sea-level rise
2018
UNESCO World Heritage sites (WHS) located in coastal areas are increasingly at risk from coastal hazards due to sea-level rise. In this study, we assess Mediterranean cultural WHS at risk from coastal flooding and erosion under four sea-level rise scenarios until 2100. Based on the analysis of spatially explicit WHS data, we develop an index-based approach that allows for ranking WHS at risk from both coastal hazards. Here we show that of 49 cultural WHS located in low-lying coastal areas of the Mediterranean, 37 are at risk from a 100-year flood and 42 from coastal erosion, already today. Until 2100, flood risk may increase by 50% and erosion risk by 13% across the region, with considerably higher increases at individual WHS. Our results provide a first-order assessment of where adaptation is most urgently needed and can support policymakers in steering local-scale research to devise suitable adaptation strategies for each WHS.
UNESCO World Heritage located in low-lying coastal areas is increasingly at risk from flooding and erosion due to sea-level rise. This study shows that up to 82% of cultural World Heritage sites located in the Mediterranean will be at risk from coastal flooding and over 93% from coastal erosion by 2100 under high-end sea-level rise.
Journal Article
Coastal flooding and mean sea-level rise allowances in atoll island
2022
Atoll islands are among the places most vulnerable to climate change due to their low elevation above mean sea level. Even today, some of these islands suffer from severe flooding generated by wind-waves, that will be exacerbated with mean sea-level rise. Wave-induced flooding is a complex physical process that requires computationally-expensive numerical models to be reliably estimated, thus limiting its application to single island case studies. Here we present a new model-based parameterisation for wave setup and a set of numerical simulations for the wave-induced flooding in coral reef islands as a function of their morphology, the Manning friction coefficient, wave characteristics and projected mean sea level that can be used for rapid, broad scale (e.g. entire atoll island nations) flood risk assessments. We apply this new approach to the Maldives to compute the increase in wave hazard due to mean sea-level rise, as well as the change in island elevation or coastal protection required to keep wave-induced flooding constant. While future flooding in the Maldives is projected to increase drastically due to sea-level rise, we show that similar impacts in nearby islands can occur decades apart depending on the exposure to waves and the topobathymetry of each island. Such assessment can be useful to determine on which islands adaptation is most urgently needed.
Journal Article
Coastal Migration due to 21st Century Sea‐Level Rise
2021
Rising mean and extreme sea‐levels and induced increased coastal flooding are expected to lead to massive coastal migration if coasts are not protected. Using a wide range of sea‐level rise (SLR) scenarios, socioeconomic pathways and discount rate assumptions, 21st century coastal migration is assessed at global scale assuming local cost‐benefit optimal protection decisions for about 12,000 coastal segments with homogeneous coastal and socioeconomic characteristics. Costs considered include investment and maintenance cost for protection, migration cost in the case of no protection, and expected annual damage to assets by extreme sea‐level events that over‐top existing protection. Robust decisions in favor of protection over all scenarios are found for about 3% of the global coastline, covering 78% of global coastal population and 92% of global coastal floodplain assets. For the remaining 97% of global coastline cumulative 21st century land loss ranges from 60,000 to 415,000 km2 and coastal migration ranges from 17 to 72 million people. Big countries with long uninhabited coastlines suffer the biggest land losses. In absolute terms big countries in South and South‐east Asia account for the highest coastal migration, while in relative terms small island nations suffer most. Global cost of 21st century SLR can be lowered by factor two to four if local cost‐benefit decisions also consider, next to protection, coastal migration as an adaptation option. Plain Language Summary This study provides the first estimate of 21st century global coastal migration due to sea‐level rise (SLR), considering the feedbacks between coastal protection and migration. 21st century coastal mean SLR of 33–170 cm combined with five socio‐economic scenarios is projected to lead to global coastal land loss of 60,000–415,000 km² and associated migration of 17–72 million people assuming cost‐benefit optimal local protection decisions. Considering coastal retreat as an option in local coastal adaptation decision making lowers 21st century cost of SLR by factor 2 to 4 compared to decision making that only considers protection as an option. Key Points We provide an estimate of 21st century global coastal migration due to sea‐level rise (SLR) taking into account local coastal protection Using multiple climate and socio‐economic scenarios we estimate 21st century coastal migration to 17–72 million people Considering coastal retreat as an option in coastal adaptation decision making lowers 21st century cost of SLR by factors 2 to 4
Journal Article