Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Hirotaka Komaba"
Sort by:
Roles of PTH and FGF23 in kidney failure: a focus on nonclassical effects
Parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23) each play a central role in the pathogenesis of chronic kidney disease-mineral and bone disorder (CKD-MBD). Both hormones increase as kidney function declines, presumably as a response to maintain normal phosphate balance, but when patients reach kidney failure, PTH and FGF23 fail to exert their phosphaturic effects, leading to hyperphosphatemia and further elevations in PTH and FGF23. In patients with kidney failure, the major target organ for PTH is the bone, but elevated PTH is also associated with mortality presumably through skeletal and nonskeletal mechanisms. Indeed, accumulated evidence suggests improved survival with PTH-lowering therapies, and a more recent study comparing parathyroidectomy and calcimimetic treatment further suggests a notion of “the lower, the better” for PTH control. Emerging data suggest that the link between SHPT and mortality could in part be explained by the action of PTH to induce adipose tissue browning and wasting. In the absence of a functioning kidney, the classical target organ for FGF23 is the parathyroid gland, but FGF23 loses its hormonal effect to suppress PTH secretion owing to the depressed expression of parathyroid Klotho. In this setting, experimental data suggest that FGF23 exerts adverse nontarget effects, but it remains to be confirmed whether FGF23 directly contributes to multiple organ injury in patients with kidney failure and whether targeting FGF23 can improve patient outcomes. Further efforts should be made to determine whether intensive control of SHPT improves clinical outcomes and whether nephrologists should aim at controlling FGF23 levels just as with PTH levels.
FGF23–parathyroid interaction: implications in chronic kidney disease
Over the past few years there have been considerable advances in our understanding of the physiological regulation of mineral homeostasis. One of the most important breakthroughs is the identification of fibroblastic growth factor 23 (FGF23) and its role as a key regulator of phosphate and 1,25-dihydroxyvitamin D metabolism. FGF23 exerts its biological functions by binding to its cognate receptor in the presence of Klotho as a cofactor. FGF23 principally acts on the kidney to induce urinary phosphate excretion and suppresses 1,25-dihydroxyvitamin D synthesis, thereby indirectly modulating parathyroid hormone secretion. FGF23 also acts directly on the parathyroid to decrease parathyroid hormone synthesis and secretion. In patients with chronic kidney disease, FGF23 levels increase progressively to compensate for phosphate retention, but these elevated FGF23 levels fail to suppress the secretion of parathyroid hormone, particularly in the setting of uremia. Recent data suggest that this parathyroid resistance to FGF23 may be caused by decreased expression of Klotho–FGFR1 complex in hyperplastic parathyroid glands. This review summarizes recent insights into the role of FGF23 in mineral homeostasis and discusses the involvement of its direct and indirect interaction with the parathyroid gland, particularly focusing on the pathophysiology of secondary hyperparathyroidism in chronic kidney disease.
Old and New Drugs for the Management of Bone Disorders in CKD
Disturbances in mineral and bone metabolism are common in patients with chronic kidney disease (CKD), especially those undergoing dialysis. Renal osteodystrophy, which describes an alteration of bone morphology, is an important component of this systemic disorder and may explain the elevated risk of fracture which adversely affects morbidity and mortality. The most common form of renal osteodystrophy is high-turnover bone disease (osteitis fibrosa), which is induced by secondary hyperparathyroidism (SHPT). During the past decade, there has been considerable advances in the management of SHPT, with the introduction of the calcimimetic agents, the optimized use of nutritional and active vitamin D, and the accumulated experience with surgical parathyroidectomy. Studies supported that these advances could translate into improvement of renal bone disease and fracture prevention, as well as decreasing the risk of cardiovascular events and mortality. In this review, we summarize the available clinical evidence on the effect of old and new drugs on bone disorders in patients with CKD.
Estimated Number of Prevalent Kidney Transplant Recipients in Japan From 1964 to 2023
Compared with dialysis, it offers multiple advantages, including improved survival, better quality of life, and reduced healthcare costs [1,2]. [...]understanding the implementation of kidney transplantation is essential for appropriate healthcare resource allocation and policy planning in each region. Furthermore, this secondary analysis relied entirely on summary data without access to individual-level information. [...]kidney transplantation remains a relatively uncommon KRT modality in Japan, but the number of recipients with functioning grafts has steadily increased.
Skeletal and mineral metabolic effects of risedronate in a rat model of high-turnover renal osteodystrophy
IntroductionHigh-turnover bone disease is a major consequence of SHPT and may explain the high risk for fracture in patients with advanced chronic kidney disease (CKD). Bisphosphonates suppress bone turnover and improve bone strength, but their effects have not been fully characterized in advanced CKD with severe SHPT. Bisphosphonates also increase 1,25-dihydroxyvitamin D levels in normal and uremic rats, but the underlying mechanism remains to be determined.Materials and methodsWe investigated the skeletal and mineral metabolic effects of RIS, a pyridinyl bisphosphonate, in rats with severe SHPT induced by 5/6 nephrectomy plus a high phosphate diet.ResultsNephrectomized rats developed severe SHPT, along with hyperphosphatemia, low 1,25-dihydroxyvitamin D, and markedly increased FGF23. Moreover, these rats exhibited characteristic features of high-turnover renal osteodystrophy, including increased indices of trabecular bone turnover, decreased cortical bone thickness, inferior cortical biomechanical properties, and a prominent increase in peritrabecular fibrosis. RIS treatment increased bone volume and partially attenuated trabecular bone remodeling, cortical bone loss, and mechanical properties, whereas it produced a marked improvement in peritrabecular fibrosis along with a corresponding decrease in osteogenic gene markers. RIS treatment also suppressed the elevation of FGF23, which was associated with increased 1,25-dihydroxyvitamin D.ConclusionsIn a rat model of severe SHPT, treatment with RIS partially attenuated histological manifestations of high-turnover bone disease. RIS treatment also suppressed the elevation of FGF23, which may explain the increased 1,25-dihydroxyvitamin D production during the treatment.
Management of secondary hyperparathyroidism: how and why?
Secondary hyperparathyroidism (SHPT) is a common complication in chronic kidney disease. Currently, various treatment options are available, including vitamin D receptor activators, cinacalcet hydrochloride, and parathyroidectomy. These treatment options have contributed to the successful control of SHPT, and recent clinical studies have provided evidence suggesting that effective treatment of SHPT leads to improved survival. Although bone disease is the most widely recognized consequence of SHPT and remains a major target for treatment of SHPT, there is increasing evidence that parathyroid hormone (PTH) and fibroblast growth factor 23 (FGF23), both of which are markedly elevated in SHPT, have multiple adverse effects on extraskeletal tissues. These actions may lead to the pathological development of left ventricular hypertrophy, renal anemia, immune dysfunction, inflammation, wasting, muscle atrophy, and urate accumulation. Given that treatment of SHPT leads to decreases in both PTH and FGF23, these data provide an additional rationale for treating SHPT. However, definitive evidence is still lacking, and future research should focus on whether treatment of SHPT prevents the adverse effects of PTH and FGF23.
Evaluation of ABCG2-mediated extra-renal urate excretion in hemodialysis patients
Two-thirds of urate is excreted via the renal pathway and the remaining one-third via the extra-renal pathway, the latter mainly via the intestine in healthy individuals. ABCG2, a urate exporter, is expressed in various tissues including the kidney and intestine, and its dysfunction leads to hyperuricemia and gout. ABCG2 is regarded as being responsible for most of the extra-renal urate excretion. However, the extra-renal urate excretion capacity via ABCG2 remains undefined in end-stage kidney diseases. Therefore, we evaluated the capacity of extra-renal ABCG2 using 123 anuric hemodialysis patients whose urate excretion depended on only the extra-renal pathway. ABCG2 function in each participant was estimated based on ABCG2 dysfunctional variants. We computed the uric acid pool (Pool UA ) from bodyweight and serum urate level (SUA) using previously reported radio-isotopic data, and we analyzed the association between ABCG2 function and the Pool UA . SUA and Pool UA increased significantly with ABCG2 dysfunction, and extra-renal ABCG2 could excrete up to approximately 60% of the daily uric acid turnover in hemodialysis patients. Our findings indicate that the extra-renal urate excretion capacity can expand with renal function decline and highlight that the extra-renal pathway is particularly important in the uric acid homeostasis for patients with renal dysfunction.
Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients
Fibroblast growth factor 23 (FGF23) exerts its effect by binding to its cognate FGF receptor 1 (FGFR1) in the presence of its co-receptor Klotho. Parathyroid glands express both FGFR1 and Klotho, and FGF23 decreases parathyroid hormone gene expression and hormone secretion directly. In uremic patients with secondary hyperparathyroidism (SHPT), however, parathyroid hormone secretion remains elevated despite extremely high FGF23 levels. To determine the mechanism of this resistance, we measured the expression of Klotho, FGFR1, and the proliferative marker Ki67 in 7 normal and 80 hyperplastic parathyroid glands from uremic patients by immunohistochemistry. All uremic patients had severe SHPT along with markedly high FGF23 levels. Quantitative real-time reverse transcription PCR showed that the mRNA levels for Klotho and FGFR1correlated significantly with their semi-quantitative immunohistochemical intensity. Compared with normal tissue, the immunohistochemical expression of Klotho and FGFR1 decreased, but Ki67 expression increased significantly in hyperplastic parathyroid glands, particularly in glands with nodular hyperplasia. These results suggest that the depressed expression of the Klotho–FGFR1 complex in hyperplastic glands underlies the pathogenesis of SHPT and its resistance to extremely high FGF23 levels in uremic patients.
Post-kidney transplant soluble Klotho levels are determined by pretransplant soluble Klotho levels in both living donors and recipients
BackgroundSoluble Klotho (sKl), the free form of membrane-bound Klotho predominantly expressed in the kidney, is detectable in serum and may have multiple pleiotropic effects. Patients with end-stage kidney disease are possibly sKl deficient, and kidney transplantation is the treatment of choice in these patients; however, little is known about changes in posttransplant sKl level and the factors influencing these changes.MethodsWe conducted a prospective longitudinal study to examine changes in posttransplant sKl level in recipients for 12 months after living-donor kidney transplantation and analyzed correlations between posttransplant changes in sKl levels and various influencing factors in both recipients and donors.Results29 kidney transplant recipients and their living donors were included for analysis. The results showed that sKl levels transiently decreased at 1 week posttransplant but progressively increased thereafter for 12 months. Multivariable linear regression analysis showed that body surface area-adjusted donor sKl levels were associated with posttransplant increases in recipient sKl levels at 12 months. In addition, pretransplant recipient sKl levels and body surface area-adjusted donor sKl levels were identified as an independent predictor of 12-month posttransplant sKl levels.ConclusionPretransplant sKl levels in both kidney recipients and living donors are a strong determinant of sKl levels after kidney transplantation.