Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
24 result(s) for "Hirsch, Alec J."
Sort by:
Nonhuman Primate Models of Zika Virus Infection and Disease during Pregnancy
Since the explosive outbreak of Zika virus in Brazil and South/Central America in 2015–2016, the frequency of infections has subsided, but Zika virus remains present in this region as well as other tropical and sub-tropical areas of the globe. The most alarming aspect of Zika virus infection is its association with severe birth defects when infection occurs in pregnant women. Understanding the mechanism of Zika virus pathogenesis, which comprises features unique to Zika virus as well as shared with other teratogenic pathogens, is key to future prophylactic or therapeutic interventions. Nonhuman primate-based research has played a significant role in advancing our knowledge of Zika virus pathogenesis, especially with regard to fetal infection. This review summarizes what we have learned from these models and potential future research directions.
Effects of COVID-19 virus-like particles on the behavioral and cognitive performance of human apolipoprotein E targeted replacement mice
IntroductionThe effects of viral infections might be apolipoprotein E (apoE) isoform-dependent. In humans, there are three major apoE isoforms, E2, E3, and E4. E4 is associated with the enhanced entry of several viruses into the brain and their disease progression. A concern of infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the development of post-acute COVID-19 syndrome, also known as long COVID. Genetic risk factors for developing long COVID were reported.MethodsIn this study, we used virus-like particles (VLPs) that include expression of the SARS-CoV-2 nucleocapsid (N), membrane (M), and envelope (E) structural proteins together with S. In the current study, we used human E2, E3, and E4 targeted replacement mice to assess whether these VLPs affect body weight, behavioral and cognitive performance, and circadian body temperatures. Using VLPs allow working outside an ABSL-3 facility.ResultsThe effects of VLPs on some behavioral measures were apoE isoform-dependent, with the E2 mice being more affected than E3 or E4 mice. The overall decreased activity in the open field containing objects in week 2 indicate that VLPs can also reduce activity levels in an apoE isoform-independent fashion.DiscussionThe results of the current study indicate that even in the absence of viral replication, detrimental effects of VLPs on behavioral measures and circadian body temperatures are seen.
Effects of West Nile virus on behavioral and cognitive performance, cortical Aβ pathology, viral loads, and immune measures of middle-aged NL-G-F/E3 and NL-G-F/E4 mice
West Nile Virus (WNV) can cause severe and long-lasting neurological disease and results in some neuropathology and neuroinflammation seen in Alzheimer's disease (AD). Exposure to WNV might impact AD-relevant behavioral and cognitive performance and neuropathology via AD-susceptibility genes (i.e., E4) and by inducing neuroinflammation (i.e., increases in TCR-α, IFN-γ, TNF-α, and CXCL- 10). There are three human apolipoprotein E (E) isoforms, which play a role in cholesterol metabolism: E2, E3, and E4. Compared to E3, E4 is an AD risk factor. We crossed knock-in (KI) mice expressing human amyloid precursor protein (APP) containing the dominant NL-G-F mutations with human apoE targeted replacement (TR) mice and used middle-aged NL-G-F/E3 and NL-G-F/E4 mice to assess the role of prior WNV (subtype Kunjin virus) (KUNV) exposure on hAPP/Aβ-induced behavioral alterations, cognitive injury, circadian body temperatures, viral loads, neuropathology, and transcript levels of four immune measures important in the detrimental effects of KUNV on brain function. KUNV affected physiological, behavioral, cognitive, amyloid pathology, viral load, and immune measures in middle aged NL-G-F mice in an apoE isoform-dependent fashion. NL-G-F/E4 mice were more susceptible to KUNV induced cognitive injury and prolonged viral load in the cortex. These results support an important apoE isoform-dependent role in modulating phenotypes in the NL-G-F AD mouse model following WNV exposure.
Comparative Analysis of Two Zika Virus Isolates in a Rhesus Macaque Pregnancy Model
Zika virus (ZIKV) infection during pregnancy can cause a broad range of neurological birth defects, collectively named Congenital Zika Syndrome (CZS). We have previously shown that infection with the Puerto Rican isolate PRVABC59 (ZIKV-PR) results in abnormal oxygen transport in the placenta due to villous damage and uterine vasculitis in a nonhuman primate model. To investigate whether this type of damage occurs with endemically circulating strains in Thailand, we investigated a CZS case isolate, MU1-2017 (ZIKV-TH), in pregnant rhesus macaques. Pregnant animals (n = 3 per group) were infected subcutaneously with either ZIKV-PR or ZIKV-TH at ~50 days gestation (GD) and monitored for 40 days post-infection (GD90). Similar courses of viremia and immune activation were observed for both viruses when compared to uninfected controls. In addition, both viruses induced changes to the placental architecture, including spiral artery remodeling and the development of infarctions. Similar levels of viral RNA were detected at necropsy in maternal and fetal tissues. Overall, our results show that the ZIKV-TH strain MU1-2017 behaves similarly to the ZIKV-PR strain, and, importantly, provide evidence of in-utero infection with an additional contemporary strain of ZIKV.
Exposure to COVID-19 virus-like particles modulates firing patterns of cortical neurons in the mouse brain
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) causes a systemic infection that affects the central nervous system. However, its high infectivity makes comprehensive research with the active virus challenging. Here, we use virus-like particles (VLPs) to explore how exposure to SARS-CoV-2 proteins affects brain activity patterns in wild-type mice and in mice that express the human tau protein. VLP exposure elicits changes in corticosterone and distinct chemokine levels. Longitudinal two-photon microscopy recordings in primary somatosensory and motor cortices reveal substantial short-term increases in cortical activity in VLP-injected mice, with increased stimulus-evoked activity in both genotypes and elevated spontaneous activity in the human tau genotype only. Vehicle-injected human tau mice also show increases in cortical activity patterns. Over the following weeks, activity metrics partially subside but do not completely return to baseline levels. Overall, our data suggest that exposure to SARS-CoV-2 VLPs leads to strong short-term disruption of cortical activity patterns in mice with long-term residual effects. Middle-aged human tau mice, which have a more vulnerable genetic background and overexpression of the tau protein, exhibit more severe pathobiology and may be at risk for more adverse outcomes. Longitudinal monitoring of the effects of exposure to COVID-19 virus-like proteins on mouse brain reveals alterations of spontaneous and sensory-stimulated activity patterns with increased vulnerability of mice that express the human tau protein.
A Novel Agonist of the TRIF Pathway Induces a Cellular State Refractory to Replication of Zika, Chikungunya, and Dengue Viruses
The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3- c ]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity. IMPORTANCE The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases. The type I interferon system is part of the innate immune response that has evolved in vertebrates as a first line of broad-spectrum immunological defense against an unknowable diversity of microbial, especially viral, pathogens. Here, we characterize a novel small molecule that artificially activates this response and in so doing generates a cellular state antagonistic to growth of currently emerging viruses: Zika virus, Chikungunya virus, and dengue virus. We also show that this molecule is capable of eliciting cellular responses that are predictive of establishment of adaptive immunity. As such, this agent may represent a powerful and multipronged therapeutic tool to combat emerging and other viral diseases.
The TLR7/8 agonist INI-4001 enhances the immunogenicity of a Powassan virus-like-particle vaccine
Powassan virus (POWV) is a pathogenic tick-borne flavivirus that causes fatal neuroinvasive disease in humans. There are currently no approved therapies or vaccines for POWV infection. Here, we develop a POW virus-like particle (POW-VLP) based vaccine adjuvanted with the novel synthetic Toll-like receptor 7/8 agonist INI-4001. We demonstrate that INI-4001 outperforms both alum and the Toll-like receptor 4 agonist INI-2002 in enhancing the immunogenicity of a dose-sparing POW-VLP vaccine in mice. INI-4001 increases the magnitude and breadth of the antibody response as measured by whole-virus ELISA, induces neutralizing antibodies measured by FRNT, reduces viral burden in the brain of infected mice measured by RT-qPCR, and confers 100% protection from lethal challenge with both lineages of POWV. We show that the antibody response induced by INI-4001 is more durable than standard alum, and 80% of mice remain protected from lethal challenge 9-months post-vaccination. Lastly, we show that the protection elicited by INI-4001 adjuvanted POW-VLP vaccine is unaffected by either CD4 + or CD8 + T cell depletion and can be passively transferred to unvaccinated mice indicating that protection is mediated through humoral immunity. This study highlights the utility of novel synthetic adjuvants in VLP-based vaccines.
Zika Virus infection of rhesus macaques leads to viral persistence in multiple tissues
Zika virus (ZIKV), an emerging flavivirus, has recently spread explosively through the Western hemisphere. In addition to symptoms including fever, rash, arthralgia, and conjunctivitis, ZIKV infection of pregnant women can cause microcephaly and other developmental abnormalities in the fetus. We report herein the results of ZIKV infection of adult rhesus macaques. Following subcutaneous infection, animals developed transient plasma viremia and viruria from 1-7 days post infection (dpi) that was accompanied by the development of a rash, fever and conjunctivitis. Animals produced a robust adaptive immune response to ZIKV, although systemic cytokine response was minimal. At 7 dpi, virus was detected in peripheral nervous tissue, multiple lymphoid tissues, joints, and the uterus of the necropsied animals. Notably, viral RNA persisted in neuronal, lymphoid and joint/muscle tissues and the male and female reproductive tissues through 28 to 35 dpi. The tropism and persistence of ZIKV in the peripheral nerves and reproductive tract may provide a mechanism of subsequent neuropathogenesis and sexual transmission.
Miscarriage and stillbirth following maternal Zika virus infection in nonhuman primates
Zika virus (ZIKV) infection is associated with congenital defects and pregnancy loss. Here, we found that 26% of nonhuman primates infected with Asian/American ZIKV in early gestation experienced fetal demise later in pregnancy despite showing few clinical signs of infection. Pregnancy loss due to asymptomatic ZIKV infection may therefore be a common but under-recognized adverse outcome related to maternal ZIKV infection. Zika virus infection during pregnancy is associated with an increased rate of fetal loss in nonhuman primates, as reported in this multicenter analysis.