Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
96 result(s) for "Hisatome Ichiro"
Sort by:
Update in uric acid, hypertension, and cardiovascular diseases
A direct relationship between serum uric acid levels and hypertension, cardiovascular, renal and metabolic diseases has been reported in many basic and epidemiological studies. Among these, high blood pression is one of the most common features associated with hyperuricemia. In this regard, several small-scale interventional studies have demonstrated a significant reduction in blood pressure in hypertensive or prehypertensive patients on uric acid-lowering drugs. These observation or intervention studies have led to affirm that there is a causal relationship between uric acid and hypertension. While the clinical association between uric acid and high blood pressure is notable, no clear conclusion has yet been reached as to whether lowering uric acid is beneficial to prevent cardiovascular and renal metabolic diseases. Recently, several prospective randomized controlled intervention trials using allopurinol and other uric acid-lowering drugs have been reported, and the results from these trials were almost negative, suggesting that the correlation between hyperuricemia and cardiovascular disease has no causality. However, it is important to note that in some of these recent studies there were high dropout rates and an important fraction of participants were not hyperuricemic. Therefore, we should carry caution in interpreting the results of these studies. This review article presents the results of recent clinical trials using uric acid-lowering drugs, focusing on hypertension and cardiovascular and renal metabolic diseases, and discusses the future of uric acid therapy.
High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo
Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA) affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS) production. Western blot analysis was used to examine the levels of insulin receptor (IR), phosphorylated insulin receptor substrate 1 (IRS1, Ser307) and phospho-Akt (Ser473). We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307) and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC), a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307) response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307) and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.
Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects
Obesity is a risk factor for hypertension, diabetes mellitus (DM), dyslipidemia, and hyperuricemia. Here, we evaluated whether the same body mass index (BMI) for the U.S. population conferred similar metabolic risk in Japan. This was a cross-sectional analysis involving 90,047 Japanese adults (18–85 years) from St. Luke’s International Hospital, Tokyo, Japan and 14,734 adults from National Health and Nutrition Examination Survey (NHANES) collected in the U.S. We compared the prevalence of hypertension, DM, dyslipidemia, and hyperuricemia according to BMI in Japan and the U.S. The prevalence of hypertension, DM, and dyslipidemia were significantly higher in the U.S. than Japan, whereas the prevalence of hyperuricemia did not differ between countries. Higher BMI was an independent risk factor for hypertension, DM, dyslipidemia, and hyperuricemia both in Japan and in the U.S. after adjusting for age, sex, smoking and drinking habits, chronic kidney disease, and other cardiovascular risk factors. The BMI cut-off above which the prevalence of these cardio-metabolic risk factors increased was significantly higher in the U.S. than in Japan (27 vs. 23 kg/m2 for hypertension, 29 vs. 23 kg/m2 for DM, 26 vs. 22 kg/m2 for dyslipidemia, and 27 vs. 23 kg/m2 for hyperuricemia). Higher BMI is associated with an increased prevalence of hypertension, DM, dyslipidemia, and hyperuricemia both in Japan and U.S. The BMI cut-off above which the prevalence of cardio-metabolic risk factors increases is significantly lower in Japan than the U.S., suggesting that the same definition of overweight/obesity may not be similarly applicable in both countries.
α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats
Cell-based therapy using adipose-derived stem cells (ADSCs) has emerged as a novel therapeutic approach to treat heart failure after myocardial infarction (MI). The purpose of this study was to determine whether inhibition of α1-adrenergic receptors (α1-ARs) in ADSCs attenuates ADSC sheet-induced improvements in cardiac functions and inhibition of remodeling after MI. ADSCs were isolated from fat tissues of Lewis rats. In in vitro studies using cultured ADSCs, we determined the mRNA levels of vascular endothelial growth factor (VEGF)-A and α1-AR under normoxia or hypoxia and the effects of norepinephrine and an α1-blocker, doxazosin, on the mRNA levels of angiogenic factors. Hypoxia increased α1-AR and VEGF mRNA levels in ADSCs. Norepinephrine further increased VEGF mRNA expression under hypoxia; this effect was abolished by doxazosin. Tube formation of human umbilical vein endothelial cells was promoted by conditioned media of ADSCs treated with the α1 stimulant phenylephrine under hypoxia but not by those of ADSCs pretreated with phenylephrine plus doxazosin. In in vivo studies using rats with MI, transplanted ADSC sheets improved cardiac functions, facilitated neovascularization, and suppressed fibrosis after MI. These effects were abolished by doxazosin treatment. Pathway analysis from RNA sequencing data predicted significant upregulation of α1-AR mRNA expression in transplanted ADSC sheets and the involvement of α1-ARs in angiogenesis through VEGF. In conclusion, doxazosin abolished the beneficial effects of ADSC sheets on rat MI hearts as well as the enhancing effect of norepinephrine on VEGF expression in ADSCs, indicating that ADSC sheets promote angiogenesis and prevent cardiac dysfunction and remodeling after MI via their α1-ARs.
Prevalence and complications of hypouricemia in a general population: A large-scale cross-sectional study in Japan
Hypouricemia was reported as a risk factor for exercise-induced acute renal injury (EIAKI) and urinary stones. However, the prevalence of kidney diseases among hypouricemic subjects has not been evaluated. This study was conducted to clarify the prevalence of hypouricemia and the association of hypouricemia with kidney diseases by using a large-scale Japanese population data. This study is a retrospective cross-sectional study at the Center for Preventive Medicine, St. Luke's International Hospital, Tokyo, Japan, and Sanin Rousai Hospital, Yonago, Japan. We analyzed the medical records of 90,143 Japanese subjects at the center in St. Luke's International Hospital, Tokyo, and 4,837 subjects in Sanin Rousai Hospital, Yonago, who underwent annual regular health check-up between January 2004 and June 2010. We defined hypouricemia as serum uric acid level of ≤2.0 mg/dL. We checked the medical history of all the study subjects and compared the rates of complications including urinary stones and kidney diseases among those with or without hypouricemia. The prevalence of hypouricemia was 0.19% in St. Luke's International Hospital, Tokyo, and 0.58% in Sanin Rousai Hospital, Yonago. The prevalence of hypouricemia in women was larger than that in men both in Tokyo (0.31% vs 0.068%, p<0.001) and in Yonago (1.237% vs 0.318%, p<0.001). Among 172 hypouricemic subjects (30 men), the rates of previous urinary stones and kidney diseases (including nephritis/nephrosis) were 1.2% (3.3% men, 0.7% women) and 2.3% (10% men, 0.7% women), respectively. Hypouricemic men had a 9-fold higher rate of previously having kidney diseases compared to non-hypouricemic men (p<0.001). However, the rates of other diseases including urinary stones were not significantly different between the two groups. Hypouricemia was associated with a history of kidney disease especially in men.
Hypouricemia and Urate Transporters
Hypouricemia is recognized as a rare disorder, defined as a serum uric acid level of 2.0 mg/dL or less. Hypouricemia is divided into an overexcretion type and an underproduction type. The former typical disease is xanthinuria, and the latter is renal hypouricemia (RHUC). The frequency of nephrogenic hypouricemia due to a deficiency of URAT1 is high in Japan, accounting for most asymptomatic and persistent cases of hypouricemia. RHUC results in a high risk of exercise-induced acute kidney injury and urolithiasis. It is vital to promote research on RHUC, as this will lead not only to the elucidation of its pathophysiology but also to the development of new treatments for gout and hyperuricemia.
Effects of topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic kidney disease patients with or without gout
Background Topiroxostat, a selective xanthine oxidase inhibitor, shows effective reduction in the serum urate level in hyperuricemic patients with or without gout. The objective of this study was to evaluate the efficacy and safety of topiroxostat in hyperuricemic stage 3 chronic kidney disease patients with or without gout. Methods The study design was a 22-week, randomized, multicenter, double-blind study. The enrolled patients were randomly assigned to treatment with topiroxostat 160 mg/day ( n  = 62) or to the placebo ( n  = 61). The endpoints were the percent change in the serum urate level, change in the estimated glomerular filtration rate, the urinary albumin-to-creatinine ratio, the proportion of patients with serum urate levels of 356.88 μmol/L or less, blood pressure, and serum adiponectin. Results After 22 weeks, although the changes in the estimated glomerular filtration rate and blood pressure were not significant, the percent change in the serum urate level (−45.38 vs. −0.08 %, P  < 0.0001) and the percent change in urinary albumin-to-creatinine ratio (−33.0 vs. −6.0 %, P  = 0.0092) were found to have decreased in the topiroxostat as compared with the placebo. Although the incidence of ‘alanine aminotransferase increased’ was higher in the topiroxostat, serious adverse event rates were similar in the two groups. Conclusion Topiroxostat 160 mg effectively reduced the serum urate level in the hyperuricemic stage 3 chronic kidney disease patients with or without gout.
Impact of Hyper- and Hypo-Uricemia on Kidney Function
Uric acid (UA) forms monosodium urate (MSU) crystals to exert proinflammatory actions, thus causing gout arthritis, urolithiasis, kidney disease, and cardiovascular disease. UA is also one of the most potent antioxidants that suppresses oxidative stress. Hyper andhypouricemia are caused by genetic mutations or polymorphism. Hyperuricemia increases urinary UA concentration and is frequently associated with urolithiasis, which is augmented by low urinary pH. Renal hypouricemia (RHU) is associated with renal stones by increased level of urinary UA, which correlates with the impaired tubular reabsorption of UA. Hyperuricemia causes gout nephropathy, characterized by renal interstitium and tubular damage because MSU precipitates in the tubules. RHU is also frequently associated with tubular damage with elevated urinary beta2-microglobulin due to increased urinary UA concentration, which is related to impaired tubular UA reabsorption through URAT1. Hyperuricemia could induce renal arteriopathy and reduce renal blood flow, while increasing urinary albumin excretion, which is correlated with plasma xanthine oxidoreductase (XOR) activity. RHU is associated with exercise-induced kidney injury, since low levels of SUA could induce the vasoconstriction of the kidney and the enhanced urinary UA excretion could form intratubular precipitation. A U-shaped association of SUA with organ damage is observed in patients with kidney diseases related to impaired endothelial function. Under hyperuricemia, intracellular UA, MSU crystals, and XOR could reduce NO and activate several proinflammatory signals, impairing endothelial functions. Under hypouricemia, the genetic and pharmacological depletion of UA could impair the NO-dependent and independent endothelial functions, suggesting that RHU and secondary hypouricemia might be a risk factor for the loss of kidney functions. In order to protect kidney functions in hyperuricemic patients, the use of urate lowering agents could be recommended to target SUA below 6 mg/dL. In order to protect the kidney functions in RHU patients, hydration and urinary alkalization may be recommended, and in some cases an XOR inhibitor might be recommended in order to reduce oxidative stress.