Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
55
result(s) for
"Hishikawa, Yoshitaka"
Sort by:
Peripheral neuropathy induced by drinking water contaminated with low-dose arsenic in Myanmar
2019
Background
More than 140 million people drink arsenic-contaminated groundwater. It is unknown how much arsenic exposure is necessary to cause neurological impairment. Here, we evaluate the relationship between neurological impairments and the arsenic concentration in drinking water (ACDW).
Participants and methods
A cross-sectional study design was employed. We performed medical examinations of 1867 residents in seven villages in the Thabaung township in Myanmar. Medical examinations consisted of interviews regarding subjective neurological symptoms and objective neurological examinations of sensory disturbances. For subjective neurological symptoms, we ascertained the presence or absence of defects in smell, vision, taste, and hearing; the feeling of weakness; and chronic numbness or pain. For objective sensory disturbances, we examined defects in pain sensation, vibration sensation, and two-point discrimination. We analyzed the relationship between the subjective symptoms, objective sensory disturbances, and ACDW.
Results
Residents with ACDW ≥ 10 parts per billion (ppb) had experienced a “feeling of weakness” and “chronic numbness or pain” significantly more often than those with ACDW < 10 ppb. Residents with ACDW ≥ 50 ppb had three types of sensory disturbances significantly more often than those with ACDW < 50 ppb. In children, there was no significant association between symptoms or signs and ACDW.
Conclusion
Subjective symptoms, probably due to peripheral neuropathy, occurred at very low ACDW (around 10 ppb). Objective peripheral nerve disturbances of both small and large fibers occurred at low ACDW (> 50 ppb). These data suggest a threshold for the occurrence of peripheral neuropathy due to arsenic exposure, and indicate that the arsenic concentration in drinking water should be less than 10 ppb to ensure human health.
Journal Article
Plasmacytoid dendritic cells orchestrate TLR7-mediated innate and adaptive immunity for the initiation of autoimmune inflammation
2016
Endosomal toll-like receptor (TLR)-mediated detection of viral nucleic acids (NAs) and production of type I interferon (IFN-I) are key elements of antiviral defense, while inappropriate recognition of self NAs with the induction of IFN-I responses is linked to autoimmunity such as psoriasis and systemic lupus erythematosus. Plasmacytoid dendritic cells (pDCs) are cells specialized in robust IFN-I secretion by the engagement of endosomal TLRs and predominantly express sialic acid-binding Ig-like lectin (Siglec)-H. However, how pDCs control endosomal TLR-mediated immune responses that cause autoimmunity remains unclear. Here we show a critical role of pDCs in TLR7-mediated autoimmunity using gene-modified mice with impaired expression of Siglec-H and selective ablation of pDCs. pDCs were shown to be indispensable for the induction of systemic inflammation and effector T-cell responses triggered by TLR7 ligand. pDCs aggravated psoriasiform dermatitis mediated through the hyperproliferation of keratinocytes and enhanced dermal infiltration of granulocytes and γδ T cells. Furthermore, pDCs promoted the production of anti-self NA antibodies and glomerulonephritis in lupus-like disease by activating inflammatory monocytes. On the other hand, Siglec-H regulated the TLR7-mediated activation of pDCs. Thus, our findings reveal that pDCs provide an essential link between TLR7-mediated innate and adaptive immunity for the initiation of IFN-I-associated autoimmune inflammation.
Journal Article
Crucial role of high-mobility group box 2 in mouse ovarian follicular development through estrogen receptor beta
2022
High-mobility group box 2 (HMGB2) is a chromatin-associated protein that is an important regulator of gene transcription, recombination, and repair processes. The functional importance of HMGB2 has been reported in various organs, including the testis, heart, and cartilage. However, its role in the ovary is largely unknown. In this study, ovary tissues from wild-type (WT) and HMGB2-knock-out (KO) mice were examined by histopathological staining and immunohistochemistry. The ovary size and weight were significantly lower in HMGB2-KO mice than in age-matched WT littermates. Histopathological analysis revealed ovarian atrophy and progressive fibrosis in 10-month-old HMGB2-KO mouse ovaries. Compared to age-matched WT mice, the numbers of oocytes and developing follicles were significantly decreased at 2 months of age and were completely depleted at 10 months of age in HMGB2-KO mice. Immunohistochemistry revealed the expression of HMGB2 in the granulosa cells of developing follicles, oocytes, some corpora lutea, and stromal cells. Importantly, HMGB2-positive cells were co-localized with estrogen receptor beta (ERβ), but not ERα. Estrogen response element-binding activity was demonstrated by southwestern histochemistry, and it was decreased in HMGB2-KO mouse ovaries. Cell proliferation activity was also decreased in HMGB2-KO mouse ovaries in parallel with the decreased folliculogenesis. These results indicated that the depletion of HMGB2 induced ovarian atrophy that was characterized by a decreased ovarian size and weight, progressive fibrosis, as well as decreased oocytes and folliculogenesis. In conclusion, we demonstrated the crucial role of HMGB2 in mouse ovarian folliculogenesis through ERβ expression.
Journal Article
Protective role of estrogen through G-protein coupled receptor 30 in a colitis mouse model
by
Fidya
,
Hishikawa, Yoshitaka
,
Yano, Koichi
in
17β-Estradiol
,
Biochemistry
,
Biomedical and Life Sciences
2024
Estrogen and its receptors are involved in the pathogenesis of gastrointestinal diseases such as colitis. However, the role of the membrane estrogen receptor G-protein-coupled receptor 30 (GPR30) in colitis is poorly understood. We therefore investigated the effect of estrogen in dextran sulfate sodium (DSS)-induced colitis. Male C57BL/6 mice were administered 1.5% DSS for 5 days and treated with 17β-estradiol (E
2
), GPR30 agonist (G1), or GPR30 antagonist (G15) for 8 days. Inflammation grade was evaluated by disease activity index (DAI) and histomorphological score. Colon tissues were immunohistochemically analyzed and revealed high expression of membrane GPR30, histone 3 lysine 36 dimethylation, and lysine 79 trimethylation in normal mouse colon epithelial cells but significantly decreased expression in DSS-treated mice, whereas the expression was partially preserved after treatment with E
2
or G1. Colon shortening and DAI were significantly lower in E
2
- and G1-treated mice compared to DSS-treated mice. Caudal type homeobox 2 (CDX2) expression and cell proliferation differed in normal colon epithelial cells but overlapped in those of DSS-treated mice. Administration of E
2
and G1 reduced CDX2 expression and cell proliferation. Altered expression of claudin-2 and occludin were observed in the colonic epithelium of DSS-treated mice, and these changes were significantly lower in the colon of E
2
- and G1-treated mice. These results indicate that estrogen regulates histone modification, cell proliferation, and CDX2 expression through GPR30, which affects intestinal epithelial barrier function. We conclude that estrogen protects against intestinal epithelial damage through GPR30 by enhancing intestinal epithelial barrier function in DSS-induced colitis in mice.
Journal Article
Spatiotemporal expression of HMGB2 regulates cell proliferation and hepatocyte size during liver regeneration
by
Nanashima, Atsushi
,
Fidya
,
Taniguchi, Noboru
in
631/80/641/83
,
692/4020/4021/288/2032
,
Cell growth
2022
Liver regeneration is an extraordinarily complex process involving a variety of factors; however, the role of chromatin protein in hepatocyte proliferation is largely unknown. In this study, we investigated the functional role of high-mobility group box 2 (HMGB2), a chromatin protein in liver regeneration using wild-type and HMGB2-knockout (KO) mice. Liver tissues were sampled after 70% partial hepatectomy (PHx), and analyzed by immunohistochemistry, western blotting and flow cytometry using various markers of cell proliferation. In WT mice, hepatocyte proliferation was strongly correlated with the spatiotemporal expression of HMGB2; however, cell proliferation was significantly delayed in hepatocytes of HMGB2-KO mice. Quantitative PCR demonstrated that
cyclin D1
and
cyclin B1
mRNAs were significantly decreased in HMGB2-KO mice livers. Interestingly, hepatocyte size was significantly larger in HMGB2-KO mice at 36–72 h after PHx, and these results suggest that hepatocyte hypertrophy appeared in parallel with delayed cell proliferation. In vitro experiments demonstrated that cell proliferation was significantly decreased in HMGB2-KO cells. A significant delay in cell proliferation was also found in HMGB2-siRNA transfected cells. In summary, spatiotemporal expression of HMGB2 is important for regulation of hepatocyte proliferation and cell size during liver regeneration.
Journal Article
Depletion of high-mobility group box 2 causes seminiferous tubule atrophy via aberrant expression of androgen and estrogen receptors in mouse testis
2021
High-mobility group box 2, a chromatin-associated protein that interacts with deoxyribonucleic acid, is implicated in multiple biological processes, including gene transcription, replication, and repair. High-mobility group box 2 is expressed in several tissues, including the testis; however, its functional role is largely unknown. Here, we elucidated the role of high-mobility group box 2 in spermatogenesis. Paraffin-embedded testicular tissues were obtained from 8-week-old and 1-year-old wild-type and knock-out mice. Testis weight and number of seminiferous tubules were decreased, whereas atrophic tubules were increased in high-mobility group box 2-depleted mice. Immunohistochemistry revealed that atrophic tubules contained Sertoli cells, but not germ cells. Moreover, decreased cell proliferation and increased apoptosis were demonstrated in high-mobility group box 2-depleted mouse testis. To elucidate the cause of tubule atrophy, we examined the expression of androgen and estrogen receptors, and the results indicated aberrant expression of androgen receptor and estrogen receptor alpha in Sertoli and Leydig cells. Southwestern histochemistry detected decreased estrogen response element–binding sites in high-mobility group box 2-depleted mouse testis. High-mobility group box 1, which has highly similar structure and function as high-mobility group box 2, was examined by immunohistochemistry and western blotting, which indicated increased expression in testis. These findings indicate a compensatory increase in high-mobility group box 1 expression in high-mobility group box 2 knock-out mouse testis. In summary, depletion of high-mobility group box 2 induced aberrant expression of androgen receptor and estrogen receptor alpha, leading to decreased germ cell proliferation and increased apoptosis which resulted in focal seminiferous tubule atrophy. Summary sentence Depletion of High-mobility group box 2 induced aberrant androgen receptor and estrogen receptor alpha expression, leading to decreased germ cell proliferation and increased apoptosis, resulting in seminiferous tubule atrophy. Graphical Abstract
Journal Article
The crucial role of SETDB1 in structural and functional transformation of epithelial cells during regeneration after intestinal ischemia reperfusion injury
by
Nanashima, Atsushi
,
Fidya
,
Ishizuka, Takumi
in
Biochemistry
,
Biomarkers
,
Biomedical and Life Sciences
2024
Su (var) 3–9, enhancer of seste, trithorax (SET)-domain bifurcated histone lysine methyltransferase (SETDB1) plays a crucial role in maintaining intestinal stem cell homeostasis; however, its physiological function in epithelial injury is largely unknown. In this study, we investigated the role of SETDB1 in epithelial regeneration using an intestinal ischemia/reperfusion injury (IRI) mouse model. Jejunum tissues were sampled after 75 min of ischemia followed by 3, 24, and 48 h of reperfusion. Morphological evaluations were performed using light microscopy and electron microscopy, and the involvement of SETDB1 in epithelial remodeling was investigated by immunohistochemistry. Expression of SETDB1 was increased following 24 h of reperfusion and localized in not only the crypt bottom but also in the transit amplifying zone and part of the villi. Changes in cell lineage, repression of cell adhesion molecule expression, and decreased histone H3 methylation status were detected in the crypts at the same time. Electron microscopy also revealed aberrant alignment of crypt nuclei and fusion of adjacent villi. Furthermore, increased SETDB1 expression and epithelial remodeling were confirmed with loss of stem cells, suggesting SETDB1 affects epithelial cell plasticity. In addition, crypt elongation and increased numbers of Ki-67 positive cells indicated active cell proliferation after IRI; however, the expression of PCNA was decreased compared to sham mouse jejunum. These morphological changes and the aberrant expression of proliferation markers were prevented by sinefungin, a histone methyltransferase inhibitor. In summary, SETDB1 plays a crucial role in changes in the epithelial structure after IRI-induced stem cell loss.
Journal Article
Tmem161a regulates bone formation and bone strength through the P38 MAPK pathway
by
Ohta, Tomomi
,
Yamaguchi, Yoichiro
,
Yoshinobu, Kumiko
in
692/698/1671/63
,
692/698/690/796
,
Alkaline Phosphatase
2023
Bone remodeling is an extraordinarily complex process involving a variety of factors, such as genetic, metabolic, and environmental components. Although genetic factors play a particularly important role, many have not been identified. In this study, we investigated the role of transmembrane 161a (Tmem161a) in bone structure and function using wild-type (WT) and Tmem161a-depleted (Tmem161a
GT/GT
) mice. Mice femurs were examined by histological, morphological, and bone strength analyses. Osteoblast differentiation and mineral deposition were examined in Tmem161a-overexpressed, -knockdown and -knockout MC3T3-e1 cells. In WT mice, Tmem161a was expressed in osteoblasts of femurs; however, it was depleted in Tmem161a
GT/GT
mice. Cortical bone mineral density, thickness, and bone strength were significantly increased in Tmem161a
GT/GT
mice femurs. In MC3T3-e1 cells, decreased expression of alkaline phosphatase (ALP) and Osterix were found in Tmem161a overexpression, and these findings were reversed in Tmem161a-knockdown or -knockout cells. Microarray and western blot analyses revealed upregulation of the P38 MAPK pathway in Tmem161a-knockout cells, which referred as stress-activated protein kinases. ALP and flow cytometry analyses revealed that Tmem161a-knockout cells were resistant to oxidative stress. In summary, Tmem161a is an important regulator of P38 MAPK signaling, and depletion of Tmem161a induces thicker and stronger bones in mice.
Journal Article
Correction to: Accelerated proliferation of hepatocytes in rats with iron overload after partial hepatectomy
2020
The figure shown below is the correct version. We apologize for the mistake.
Journal Article