Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
382 result(s) for "Ho, Anthony D."
Sort by:
Human haematopoietic stem cell lineage commitment is a continuous process
Blood formation is believed to occur through stepwise progression of haematopoietic stem cells (HSCs) following a tree-like hierarchy of oligo-, bi- and unipotent progenitors. However, this model is based on the analysis of predefined flow-sorted cell populations. Here we integrated flow cytometric, transcriptomic and functional data at single-cell resolution to quantitatively map early differentiation of human HSCs towards lineage commitment. During homeostasis, individual HSCs gradually acquire lineage biases along multiple directions without passing through discrete hierarchically organized progenitor populations. Instead, unilineage-restricted cells emerge directly from a ‘continuum of low-primed undifferentiated haematopoietic stem and progenitor cells’ (CLOUD-HSPCs). Distinct gene expression modules operate in a combinatorial manner to control stemness, early lineage priming and the subsequent progression into all major branches of haematopoiesis. These data reveal a continuous landscape of human steady-state haematopoiesis downstream of HSCs and provide a basis for the understanding of haematopoietic malignancies. Velten et al.  use single-cell transcriptomics and functional data to map the early lineage commitment of human haematopoietic stem cells as a continuous process of cells passing through transitory states rather than demarcating discrete progenitors.
BRAF Inhibition in Refractory Hairy-Cell Leukemia
The authors report a dramatic response to vemurafenib in a patient with hairy-cell leukemia refractory to nucleosides and rituximab. To the Editor: Hairy-cell leukemia (HCL) is a mature B-cell lymphoid cancer that is commonly treated with purine analogues. 1 Virtually all patients with HCL carry the BRAF V600E mutation, which constitutively activates the MEK–ERK pathway and which can be inhibited in vitro by the mutation-specific BRAF inhibitor PLX-4720. 2 BRAF mutations have been identified in melanoma but are found across cancers. 3 An inhibitor of mutated BRAF (vemurafenib) has transformed the treatment of melanoma. It is unclear whether this clinical efficacy can be extrapolated to other cancers. 4 , 5 We used vemurafenib in a patient with refractory HCL and a pressing need for . . .
Replicative Senescence of Mesenchymal Stem Cells: A Continuous and Organized Process
Mesenchymal stem cells (MSC) comprise a promising tool for cellular therapy. These cells are usually culture expanded prior to their application. However, a precise molecular definition of MSC and the sequel of long-term in vitro culture are yet unknown. In this study, we have addressed the impact of replicative senescence on human MSC preparations. Within 43 to 77 days of cultivation (7 to 12 passages), MSC demonstrated morphological abnormalities, enlargement, attenuated expression of specific surface markers, and ultimately proliferation arrest. Adipogenic differentiation potential decreased whereas the propensity for osteogenic differentiation increased. mRNA expression profiling revealed a consistent pattern of alterations in the global gene expression signature of MSC at different passages. These changes are not restricted to later passages, but are continuously acquired with increasing passages. Genes involved in cell cycle, DNA replication and DNA repair are significantly down-regulated in late passages. Genes from chromosome 4q21 were over-represented among differentially regulated transcripts. Differential expression of 10 genes has been verified in independent donor samples as well as in MSC that were isolated under different culture conditions. Furthermore, miRNA expression profiling revealed an up-regulation of hsa-mir-371, hsa-mir-369-5P, hsa-mir-29c, hsa-mir-499 and hsa-let-7f upon in vitro propagation. Our studies indicate that replicative senescence of MSC preparations is a continuous process starting from the first passage onwards. This process includes far reaching alterations in phenotype, differentiation potential, global gene expression patterns, and miRNA profiles that need to be considered for therapeutic application of MSC preparations.
Aging and Replicative Senescence Have Related Effects on Human Stem and Progenitor Cells
The regenerative potential diminishes with age and this has been ascribed to functional impairments of adult stem cells. Cells in culture undergo senescence after a certain number of cell divisions whereby the cells enlarge and finally stop proliferation. This observation of replicative senescence has been extrapolated to somatic stem cells in vivo and might reflect the aging process of the whole organism. In this study we have analyzed the effect of aging on gene expression profiles of human mesenchymal stromal cells (MSC) and human hematopoietic progenitor cells (HPC). MSC were isolated from bone marrow of donors between 21 and 92 years old. 67 genes were age-induced and 60 were age-repressed. HPC were isolated from cord blood or from mobilized peripheral blood of donors between 27 and 73 years and 432 genes were age-induced and 495 were age-repressed. The overlap of age-associated differential gene expression in HPC and MSC was moderate. However, it was striking that several age-related gene expression changes in both MSC and HPC were also differentially expressed upon replicative senescence of MSC in vitro. Especially genes involved in genomic integrity and regulation of transcription were age-repressed. Although telomerase activity and telomere length varied in HPC particularly from older donors, an age-dependent decline was not significant arguing against telomere exhaustion as being causal for the aging phenotype. These studies have demonstrated that aging causes gene expression changes in human MSC and HPC that vary between the two different cell types. Changes upon aging of MSC and HPC are related to those of replicative senescence of MSC in vitro and this indicates that our stem and progenitor cells undergo a similar process also in vivo.
Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline
Diminishing potential to replace damaged tissues is a hallmark for ageing of somatic stem cells, but the mechanisms remain elusive. Here, we present proteome-wide atlases of age-associated alterations in human haematopoietic stem and progenitor cells (HPCs) and five other cell populations that constitute the bone marrow niche. For each, the abundance of a large fraction of the ~12,000 proteins identified is assessed in 59 human subjects from different ages. As the HPCs become older, pathways in central carbon metabolism exhibit features reminiscent of the Warburg effect, where glycolytic intermediates are rerouted towards anabolism. Simultaneously, altered abundance of early regulators of HPC differentiation reveals a reduced functionality and a bias towards myeloid differentiation. Ageing causes alterations in the bone marrow niche too, and diminishes the functionality of the pathways involved in HPC homing. The data represent a valuable resource for further analyses, and for validation of knowledge gained from animal models. Ageing causes an inability to replace damaged tissue. Here, the authors perform proteomics analyses of human haematopoietic stem cells and other cells in the bone marrow niche at different ages and show changes in central carbon metabolism, reduced bone marrow niche function, and enhanced myeloid differentiation.
Different Facets of Aging in Human Mesenchymal Stem Cells
Mesenchymal stem cells (MSCs) have to be culture expanded to gain relevant cell numbers for therapeutic applications. However, within 2–3 months the proliferation rate of MSCs decays until they ultimately reach a senescent state. This is accompanied by enlarged morphology, reduced expression of surface markers, and decreased differentiation potential. So far it is only scarcely understood how long-term culture affects MSC preparations, and five processes seem to be involved: (1) MSCs are composed of different sub-populations, and due to different proliferation rates the heterogeneity changes in the course of in vitro expansion; (2) cells in culture acquire mutations and other stochastic cellular defects; (3) self-renewal of MSCs may be impaired under culture conditions, leading to gradual differentiation; (4) the number of cell divisions might be restricted (e.g., by loss of telomeres), and (5) replicative senescence might be associated with the aging process of the organism. There is a growing perception that long-term culture has to be taken into account—especially for clinical applications. On the other hand, the state of replicative senescence is poorly defined by the number of population doublings or even by the number of passages. Reliable molecular measures for cellular aging are urgently needed.
Specific Age-Associated DNA Methylation Changes in Human Dermal Fibroblasts
Epigenetic modifications of cytosine residues in the DNA play a critical role for cellular differentiation and potentially also for aging. In mesenchymal stromal cells (MSC) from human bone marrow we have previously demonstrated age-associated methylation changes at specific CpG-sites of developmental genes. In continuation of this work, we have now isolated human dermal fibroblasts from young (<23 years) and elderly donors (>60 years) for comparison of their DNA methylation profiles using the Infinium HumanMethylation27 assay. In contrast to MSC, fibroblasts could not be induced towards adipogenic, osteogenic and chondrogenic lineage and this is reflected by highly significant differences between the two cell types: 766 CpG sites were hyper-methylated and 752 CpG sites were hypo-methylated in fibroblasts in comparison to MSC. Strikingly, global DNA methylation profiles of fibroblasts from the same dermal region clustered closely together indicating that fibroblasts maintain positional memory even after in vitro culture. 75 CpG sites were more than 15% differentially methylated in fibroblasts upon aging. Very high hyper-methylation was observed in the aged group within the INK4A/ARF/INK4b locus and this was validated by pyrosequencing. Age-associated DNA methylation changes were related in fibroblasts and MSC but they were often regulated in opposite directions between the two cell types. In contrast, long-term culture associated changes were very consistent in fibroblasts and MSC. Epigenetic modifications at specific CpG sites support the notion that aging represents a coordinated developmental mechanism that seems to be regulated in a cell type specific manner.
Protein abundance of AKT and ERK pathway components governs cell type‐specific regulation of proliferation
Signaling through the AKT and ERK pathways controls cell proliferation. However, the integrated regulation of this multistep process, involving signal processing, cell growth and cell cycle progression, is poorly understood. Here, we study different hematopoietic cell types, in which AKT and ERK signaling is triggered by erythropoietin (Epo). Although these cell types share the molecular network topology for pro‐proliferative Epo signaling, they exhibit distinct proliferative responses. Iterating quantitative experiments and mathematical modeling, we identify two molecular sources for cell type‐specific proliferation. First, cell type‐specific protein abundance patterns cause differential signal flow along the AKT and ERK pathways. Second, downstream regulators of both pathways have differential effects on proliferation, suggesting that protein synthesis is rate‐limiting for faster cycling cells while slower cell cycles are controlled at the G1‐S progression. The integrated mathematical model of Epo‐driven proliferation explains cell type‐specific effects of targeted AKT and ERK inhibitors and faithfully predicts, based on the protein abundance, anti‐proliferative effects of inhibitors in primary human erythroid progenitor cells. Our findings suggest that the effectiveness of targeted cancer therapy might become predictable from protein abundance. Synopsis Mathematical modeling and quantitative experiments identify the abundance of components of the AKT and ERK signaling pathways as the key determinant of the cell type‐specific regulation of Epo‐induced proliferation. Cell type‐specific dynamics of Epo‐induced signal activation are determined by the different abundance of key signaling proteins. A dynamic pathway model adapted to experimentally measured, cell type‐specific protein abundance can faithfully predict the Epo‐induced dynamics of AKT, ERK, and S6 activation. Based on snapshot measurements of protein abundance, the mathematical model predicts the cell type‐specific impact of AKT and MEK inhibitors on Epo‐induced proliferation in human cells. Graphical Abstract Mathematical modeling and quantitative experiments identify the abundance of components of the AKT and ERK signaling pathways as the key determinant of the cell type‐specific regulation of Epo‐induced proliferation.
Differences in Expansion Potential of Naive Chimeric Antigen Receptor T Cells from Healthy Donors and Untreated Chronic Lymphocytic Leukemia Patients
Therapy with chimeric antigen receptor T (CART) cells for hematological malignancies has shown promising results. Effectiveness of CART cells may depend on the ratio of naive (T ) vs. effector (T ) T cells, T cells being responsible for an enduring antitumor activity through maturation. Therefore, we investigated factors influencing the T /T ratio of CART cells. CART cells were generated upon transduction of peripheral blood mononuclear cells with a CD19.CAR-CD28-CD137zeta third generation retroviral vector under two different stimulating culture conditions: anti-CD3/anti-CD28 antibodies adding either interleukin (IL)-7/IL-15 or IL-2. CART cells were maintained in culture for 20 days. We evaluated 24 healthy donors (HDs) and 11 patients with chronic lymphocytic leukemia (CLL) for the composition of cell subsets and produced CART cells. Phenotype and functionality were tested using flow cytometry and chromium release assays. IL-7/IL-15 preferentially induced differentiation into T , stem cell memory (T : naive CD27+ CD95+), CD4+ and CXCR3+ CART cells, while IL-2 increased effector memory (T ), CD56+ and CD4+ T regulatory (T ) CART cells. The net amplification of different CART subpopulations derived from HDs and untreated CLL patients was compared. Particularly the expansion of CD4+ CART cells differed significantly between the two groups. For HDs, this subtype expanded >60-fold, whereas CD4+ CART cells of untreated CLL patients expanded less than 10-fold. Expression of exhaustion marker programmed cell death 1 on CART cells on day 10 of culture was significantly higher in patient samples compared to HD samples. As the percentage of malignant B cells was expectedly higher within patient samples, an excessive amount of B cells during culture could account for the reduced expansion potential of CART cells in untreated CLL patients. Final T /T ratio stayed <0.3 despite stimulation condition for patients, whereas this ratio was >2 in samples from HDs stimulated with IL-7/IL-15, thus demonstrating efficient CART expansion. Untreated CLL patients might constitute a challenge for long-lasting CART effects since only a low number of T among the CART product could be generated. Depletion of malignant B cells before starting CART production might be considered to increase the T /T ratio within the CART product.
Glucose Metabolism and Aging of Hematopoietic Stem and Progenitor Cells
Comprehensive proteomics studies of human hematopoietic stem and progenitor cells (HSPC) have revealed that aging of the HSPC compartment is characterized by elevated glycolysis. This is in addition to deregulations found in murine transcriptomics studies, such as an increased differentiation bias towards the myeloid lineage, alterations in DNA repair, and a decrease in lymphoid development. The increase in glycolytic enzyme activity is caused by the expansion of a more glycolytic HSPC subset. We therefore developed a method to isolate HSPC into three distinct categories according to their glucose uptake (GU) levels, namely the GUhigh, GUinter and GUlow subsets. Single-cell transcriptomics studies showed that the GUhigh subset is highly enriched for HSPC with a differentiation bias towards myeloid lineages. Gene set enrichment analysis (GSEA) demonstrated that the gene sets for cell cycle arrest, senescence-associated secretory phenotype, and the anti-apoptosis and P53 pathways are significantly upregulated in the GUhigh population. With this series of studies, we have produced a comprehensive proteomics and single-cell transcriptomics atlas of molecular changes in human HSPC upon aging. Although many of the molecular deregulations are similar to those found in mice, there are significant differences. The most unique finding is the association of elevated central carbon metabolism with senescence. Due to the lack of specific markers, the isolation and collection of senescent cells have yet to be developed, especially for human HSPC. The GUhigh subset from the human HSPC compartment possesses all the transcriptome characteristics of senescence. This property may be exploited to accurately enrich, visualize, and trace senescence development in human bone marrow.