Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
1,089 result(s) for "Ho, Hang"
Sort by:
Gaseous, PM2.5 mass, and speciated emission factors from laboratory chamber peat combustion
Peat fuels representing four biomes of boreal (western Russia and Siberia), temperate (northern Alaska, USA), subtropical (northern and southern Florida, USA), and tropical (Borneo, Malaysia) regions were burned in a laboratory chamber to determine gas and particle emission factors (EFs). Tests with 25 % fuel moisture were conducted with predominant smoldering combustion conditions (average modified combustion efficiency (MCE) =0.82±0.08). Average fuel-based EFCO2 (carbon dioxide) are highest (1400 ± 38 g kg−1) and lowest (1073 ± 63 g kg−1) for the Alaskan and Russian peats, respectively. EFCO (carbon monoxide) and EFCH4 (methane) are ∼12 %–15 % and ∼0.3 %–0.9 % of EFCO2, in the range of 157–171 and 3–10 g kg−1, respectively. EFs for nitrogen species are at the same magnitude as EFCH4, with an average of 5.6 ± 4.8 and 4.7 ± 3.1 g kg−1 for EFNH3 (ammonia) and EFHCN (hydrogen cyanide); 1.9±1.1 g kg−1 for EFNOx (nitrogen oxides); and 2.4±1.4 and 2.0 ± 0.7 g kg−1 for EFNOy (total reactive nitrogen) and EFN2O (nitrous oxide). An oxidation flow reactor (OFR) was used to simulate atmospheric aging times of ∼2 and ∼7 d to compare fresh (upstream) and aged (downstream) emissions. Filter-based EFPM2.5 varied by > 4-fold (14–61 g kg−1) without appreciable changes between fresh and aged emissions. The majority of EFPM2.5 consists of EFOC (organic carbon), with EFOC ∕ EFPM2.5 ratios in the range of 52 %–98 % for fresh emissions and ∼14 %–23 % degradation after aging. Reductions of EFOC (∼7–9 g kg−1) after aging are most apparent for boreal peats, with the largest degradation in low-temperature OC1 that evolves at < 140  ∘C, indicating the loss of high-vapor-pressure semivolatile organic compounds upon aging. The highest EFLevoglucosan is found for Russian peat (∼16 g kg−1), with ∼35 %–50 % degradation after aging. EFs for water-soluble OC (EFWSOC) account for ∼20 %–62 % of fresh EFOC. The majority (> 95 %) of the total emitted carbon is in the gas phase, with 54 %–75 % CO2, followed by 8 %–30 % CO. Nitrogen in the measured species explains 24 %–52 % of the consumed fuel nitrogen, with an average of 35 ± 11 %, consistent with past studies that report ∼1/3 to 2∕3 of the fuel nitrogen measured in biomass smoke. The majority (> 99 %) of the total emitted nitrogen is in the gas phase, with an average of 16.7 % as NH3 and 9.5 % as HCN. N2O and NOy constituted 5.7 % and 2.9 % of consumed fuel nitrogen. EFs from this study can be used to refine current emission inventories.
In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
The unique geographical location of the Tibetan Plateau (TP) plays an important role in regulating global climate change, but the impacts of the chemical components and atmospheric processing on the size distribution and mixing state of individual particles are rarely explored in the south-eastern margin of the TP, which is a transport channel for pollutants from Southeast Asia to the TP during the pre-monsoon season. Thus a single-particle aerosol mass spectrometer (SPAMS) was deployed to investigate how the local emissions of chemical composition interact with the transporting particles and assess the mixing state of different particle types and secondary formation in this study. The TP particles were classified into six distinct types, mainly including the largest fraction of the potassium-rich (K-rich) type in the total particles (30.9 %), followed by the biomass burning (BB) type (18.7 %). Most particle types were mainly transported from the sampling site's surroundings and along the Sino-Myanmar border, but the air mass trajectories from north-eastern India and Myanmar show a greater impact on the number fraction of the BB (31.7 %) and dust (18.2 %) types, respectively. Then, the two episodes with high particle concentrations showed that the differences in the meteorological conditions in the same trajectory clusters could cause significant changes in chemical components, especially the dust and aged elemental carbon (aged EC) types, which changed by a total of 93.6 % and 72.0 %, respectively. Ammonium and dust particles distribute at a relatively larger size (∼600 nm), but the size peak of other types is present at ∼440 nm. Compared with the abundant sulfate (97HSO4-), the low nitrate (62NO3-) internally mixed in TP particles is mainly due to the fact that nitrate is more volatilized during the transport process. The formation mechanism of secondary speciation demonstrates that the formation capacity of atmospheric oxidation is presumably affected by the convective transmission and the regional transport in the TP. However, the relative humidity (RH) could significantly promote the formation of secondary species, especially 97HSO4- and 18NH4+. This study provides new insights into the particle composition and size, mixing state, and ageing mechanism in high time resolution over the TP region.
Personal exposure to PM2.5 emitted from typical anthropogenic sources in southern West Africa: chemical characteristics and associated health risks
Urbanization is an issue that is strongly emerging in southern West Africa (sWA). There is a lack of full understanding on chemical compositions and personal exposure levels to fine particulate matter (hereafter defined as PE PM2.5) and its health risks related to various anthropogenic sources in this region. In this study, PE PM2.5 was studied in dry (January) and wet (July) seasons of 2016 for the first time to characterize the contributions of a domestic fire site (DF) to the exposure of women and a waste burning site (WB) to that of students in Abidjan, Côte d'Ivoire, and a motorcycle traffic site (MT) to that of drivers in Cotonou, Benin. The average PE PM2.5 mass concentrations were 331.7±190.7, 356.9±71.9 and 242.8±67.6 µg m−3 at DF, WB and MT sites for women, students and drivers, which were 2.4, 10.3 and 6.4 times the ambient PM2.5 concentrations, respectively. Elevated PE PM2.5 levels in the dry season were found at DF (358.8±100.5 µg m−3), WB (494.3±15.8 µg m−3) and MT (335.1±72.1 µg m−3) sites, on average 15 % higher than that at DF and 55 % higher at both WB and MT sites in the wet season. The seasonal variations were attributed to emission sources, meteorological factors and personal activities. In addition, the results show that geological material (35.8 %, 46.0 % and 42.4 %) and organic matter (34.1 %, 23.3 % and 24.9 %) were the major components of PE PM2.5 at DF, WB and MT sites. It is worth noting that the contribution of heavy metals was higher at WB (1.0 %) than at DF (0.7 %) and MT (0.4 %) sites, strongly influenced by waste burning emission. This results in the highest non-cancer risks of heavy metals to students, 5.1 and 4.8 times the values for women and drivers, respectively. By conducting organic speciation, fingerprints were used to access the exposure and identify the source contributions from typical local anthropogenic sources. The women's exposure concentration to particulate polycyclic aromatic hydrocarbons (PAHs) at DF (77.4±47.9 ng m−3) was 1.6 and 2.1 times, respectively, that of students at WB (49.9±30.7 ng m−3) and of drivers at MT (37.0±7.4 ng m−3). This can be associated with the higher contributions from solid fuels' burning and meat grilling activities to women, resulting in a level 5 times in exceedance of the cancer risk safety threshold (1×10-6). Phthalate esters (PAEs), commonly used as plasticizers in products, were in high levels in the student exposure PM2.5 samples (1380.4±335.2 ng m−3), owing to obvious waste burning activities nearby. The drivers' exposures to fossil fuel combustion markers of hopanes in PE PM2.5 at MT (50.9±7.9 ng m−3) was 3.0–3.3 times those for women at DF (17.1±6.4 ng m−3) and students at WB (15.6±6.1 ng m−3). Overall, the current study shows that wood combustion, waste burning, fugitive dust and motor vehicle emissions were the dominant sources of PE PM2.5 and mainly contributed to its toxicities. The exposure to the heavy metals Pb and Mn caused high non-cancer risks to students at WB, while the severe cancer risk of PAHs was found for women at DF via inhalation. The result of this study provides original data, initial perspective of PM2.5 personal exposure and health risk assessment in the developing areas. The information encourages the governments to improve the air quality and living standards of residents in this region.
Lutein Supplementation for Eye Diseases
Lutein is one of the few xanthophyll carotenoids that is found in high concentration in the macula of human retina. As de novo synthesis of lutein within the human body is impossible, lutein can only be obtained from diet. It is a natural substance abundant in egg yolk and dark green leafy vegetables. Many basic and clinical studies have reported lutein’s anti-oxidative and anti-inflammatory properties in the eye, suggesting its beneficial effects on protection and alleviation of ocular diseases such as age-related macular degeneration, diabetic retinopathy, retinopathy of prematurity, myopia, and cataract. Most importantly, lutein is categorized as Generally Regarded as Safe (GRAS), posing minimal side-effects upon long term consumption. In this review, we will discuss the chemical structure and properties of lutein as well as its application and safety as a nutritional supplement. Finally, the effects of lutein consumption on the aforementioned eye diseases will be reviewed.
Origin and transformation of ambient volatile organic compounds during a dust-to-haze episode in northwest China
The high contribution of secondary organic aerosol to the loading of fine particle pollution in China highlights the roles of volatile organic compound (VOC) oxidation. In this respect, particulate active metallic oxides in dust, like TiO2 and Fe ions, were proposed to influence the photochemical reactions of ambient VOCs. A case study was conducted at an urban site in Xi'an, northwest China, to investigate the origin and transformation of VOCs during a windblown dust-to-haze pollution episode, and the assumption that dust would enhance the oxidation of VOCs was verified. Local vehicle exhaust (25 %) and biomass burning (18 %) were found to be the two largest contributors to ambient VOCs. In the dust pollution period, a sharp decrease in the loading of VOCs and the aging of their components were observed. Simultaneously, the secondary oxygenated VOC fraction (i.e., methylglyoxal) increased. Source strength, physical dispersion, and regional transport were eliminated as major factors for the variation of ambient VOCs. In another aspect, about a 2- to 3-fold increase in the loading of iron (Fe) and titanium (Ti) was found in the airborne particles, together with a fast decrease in trans-/cis-2-butene ratios, which demonstrated that dust can accelerate the oxidation of ambient VOCs and the formation of secondary organic aerosol (SOA) precursors.
Seasonal variations of anhydrosugars in PM2.5 in the Pearl River Delta Region, China
Anhydrosugars including levoglucosan and mannosan are the most effective organic tracers for biomass burning aerosol in the atmosphere. In this study, to investigate the contribution of biomass burning emissions to the aerosol burden in the Pearl River Delta (PRD) region, China, 24-hour integrated PM 2.5 samples were collected simultaneously at four locations, (i) Guangzhou (GZ), (ii) Zhaoqing (ZQ) in Guangdong province, (iii) Hok Tsui (HT) and (iv) Hong Kong Polytechnic University (PU) in Hong Kong, in four seasons between 2006 and 2007. Levoglucosan and mannosan, together with water-soluble inorganic ions and water-soluble organic carbon (WSOC), were determined to elucidate the seasonal and spatial variations in biomass burning contributions. The concentrations of levoglucosan and mannosan were on average 82.4±123 and 5.8±8.6 ng m −3 , respectively. The WSOC concentrations ranged from 0.2 to 9.4 µg m −3 , with an average of 2.1±1.6 µg m −3 . The relative contributions of biomass burning emissions to OC were 33% in QZ, 12% in GZ, 4% at PU and 5% at HT, respectively, estimated by the measured levoglucosan to organic carbon ratio (LG/OC) relative to literature-derived LG/OC values. The contributions from biomass burning emissions were in general 1.7-2.8 times higher in winter than those in other seasons. Further, it was inferred from diagnostic tracer ratios that a significant fraction of biomass burning emissions was derived from burning of hard wood and likely also from field burning of agricultural residues, such as rice straw, in the PRD region. Our results highlight the contributions from biomass/biofuel burning activities on the regional aerosol budget in South China.
Impacts of short-term mitigation measures on PM2.5 and radiative effects: a case study at a regional background site near Beijing, China
Measurements at a background site near Beijing showed that pollution controls implemented during the 19th National Congress of the Communist Party of China (NCCPC) were effective in reducing PM2.5. Mass concentrations of PM2.5 and its major chemical components were 20.6 %–43.1 % lower during the NCCPC-control period compared with a non-control period, and differences were greater on days with stable meteorological conditions. A receptor model showed that PM2.5 from traffic-related emissions, biomass burning, industrial processes, and mineral dust was 38.5 %–77.8 % lower during the NCCPC-control versus non-control period, but differences in PM2.5 from coal burning were small, and secondary sources were higher during the NCCPC-control period. During one pollution episode in the non-control period, secondary sources dominated, and the WRF-Chem model showed that the Beijing–Tianjin–Hebei (BTH) region contributed 73.6 % of PM2.5 mass. A second pollution episode was linked to biomass burning, and BTH contributed 46.9 % of PM2.5 mass. Calculations based on Interagency Monitoring of Protected Visual Environments (IMPROVE) algorithms showed that organic matter was the largest contributor to light extinction during the non-control period whereasNH4NO3 was the main contributor during the NCCPC. The Tropospheric Ultraviolet and Visible radiation model showed that the average direct radiative forcing (DRF) values at the Earth's surface were -14.0 and-19.3 W m-2 during the NCCPC-control and non-control periods, respectively, and the DRF for the individual PM2.5 components were 22.7 %–46.7 % lower during the NCCPC. The information and dataset from this study will be useful for developing air pollution control strategies in the BTH region and for understanding associated aerosol radiative effects.
Directed Evolution of an Enhanced POU Reprogramming Factor for Cell Fate Engineering
Abstract Transcription factor-driven cell fate engineering in pluripotency induction, transdifferentiation, and forward reprogramming requires efficiency, speed, and maturity for widespread adoption and clinical translation. Here, we used Oct4, Sox2, Klf4, and c-Myc driven pluripotency reprogramming to evaluate methods for enhancing and tailoring cell fate transitions, through directed evolution with iterative screening of pooled mutant libraries and phenotypic selection. We identified an artificially evolved and enhanced POU factor (ePOU) that substantially outperforms wild-type Oct4 in terms of reprogramming speed and efficiency. In contrast to Oct4, not only can ePOU induce pluripotency with Sox2 alone, but it can also do so in the absence of Sox2 in a three-factor ePOU/Klf4/c-Myc cocktail. Biochemical assays combined with genome-wide analyses showed that ePOU possesses a new preference to dimerize on palindromic DNA elements. Yet, the moderate capacity of Oct4 to function as a pioneer factor, its preference to bind octamer DNA and its capability to dimerize with Sox2 and Sox17 proteins remain unchanged in ePOU. Compared with Oct4, ePOU is thermodynamically stabilized and persists longer in reprogramming cells. In consequence, ePOU: 1) differentially activates several genes hitherto not implicated in reprogramming, 2) reveals an unappreciated role of thyrotropin-releasing hormone signaling, and 3) binds a distinct class of retrotransposons. Collectively, these features enable ePOU to accelerate the establishment of the pluripotency network. This demonstrates that the phenotypic selection of novel factor variants from mammalian cells with desired properties is key to advancing cell fate conversions with artificially evolved biomolecules.
Endolysosomal processing of neuron-derived signaling lipids regulates autophagy and lipid droplet degradation in astrocytes
Dynamic regulation of metabolic activities in astrocytes is critical to meeting the demands of other brain cells. During neuronal stress, lipids are transferred from neurons to astrocytes, where they are stored in lipid droplets (LDs). However, it is not clear whether and how neuron-derived lipids trigger metabolic adaptation in astrocytes. Here, we uncover an endolysosomal function that mediates neuron-astrocyte transcellular lipid signaling. We identify Tweety homolog 1 (TTYH1) as an astrocyte-enriched endolysosomal protein that facilitates autophagic flux and LD degradation. Astrocyte-specific deletion of mouse Ttyh1 and loss of its Drosophila ortholog lead to brain accumulation of neutral lipids. Computational and experimental evidence suggests that TTYH1 mediates endolysosomal clearance of ceramide 1-phosphate (C1P), a sphingolipid that dampens autophagic flux and LD breakdown in mouse and human astrocytes. Furthermore, neuronal C1P secretion induced by inflammatory cytokine interleukin-1β causes TTYH1-dependent autophagic flux and LD adaptations in astrocytes. These findings reveal a neuron-initiated signaling paradigm that culminates in the regulation of catabolic activities in astrocytes. This study uncovers a neuron-to-astrocyte signaling pathway that regulates catabolic activities in astrocytes. The authors show that TTYH1 mediates the endolysosomal processing of neuron-derived sphingolipids which controls autophagic flux and lipid droplet homeostasis.
Randomized trial examining effectiveness of lifestyle intervention in reducing gestational diabetes in high risk Chinese pregnant women in Hong Kong
Gestational diabetes mellitus (GDM) is of public health concern. This trial examined whether a clinically proven lifestyle modification program (LMP) in early pregnancy was superior to routine antenatal care in improving GDM, maternal and infant outcomes. Chinese pregnant women at risk of GDM (n = 220) were recruited at or before 12-week gestation and randomized to either a LMP group or a routine care control group. Eighty subjects completed a dietitian-led LMP including dietary and exercise components from early pregnancy till 24-week gestation. Data were compared with those of 86 control subjects. Twenty three (26.7%) control subjects and 20 (25.0%) LMP subjects developed GDM ( p  = 0.798). The proportion of infants born large for gestational age and macrosomia was similar between groups. The LMP group showed a lower proportion of excessive gestational weight gain (GWG). Subgroup analysis suggested that those with higher LMP adherence showed more desirable dietary composition and energy intake, and lower proportion of excessive GWG compared with the low LMP adherence group and the control group. The potential effect of LMP on GDM and other maternal and infant outcomes, in particular GWG, as well as barriers for making lifestyle changes warrant further investigations (ClinicalTrials.gov NCT02368600).