Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Ho, Junming"
Sort by:
Just add sugar for carbohydrate induced self-assembly of curcumin
In nature, self-assembly processes based on amphiphilic molecules play an integral part in the design of structures of higher order such as cells. Among them, amphiphilic glycoproteins or glycolipids take on a pivotal role due to their bioactivity. Here we show that sugars, in particular, fructose, are capable of directing the self-assembly of highly insoluble curcumin resulting in the formation of well-defined capsules based on non-covalent forces. Simply by mixing an aqueous solution of fructose and curcumin in an open vessel leads to the generation of capsules with sizes ranging between 100 and 150 nm independent of the initial concentrations used. Our results demonstrate that hydrogen bonding displayed by fructose can induce the self-assembly of hydrophobic molecules such as curcumin into well-ordered structures, and serving as a simple and virtually instantaneous way of making nanoparticles from curcumin in water with the potential for template polymerization and nanocarriers. Self-assembly of carbohydrates play an integral part in the design of higher ordered structures, but is limited to amphiphiles where the carbohydrate is covalently bound to a hydrophobic tail. Here the authors show that sugars direct the self-assembly of insoluble curcumin and the formation of well-defined capsules.
Do Better Quality Embedding Potentials Accelerate the Convergence of QM/MM Models? The Case of Solvated Acid Clusters
This study examines whether the use of more accurate embedding potentials improves the convergence of quantum mechanics/molecular mechanics (QM/MM) models with respect to the size of the QM region. In conjunction with density functional theory calculations using the ωB97X-D functional, various embedding potentials including the TIP3P water model, the effective fragment potential (EFP), and semi-empirical methods (PM6, PM7, and DFTB) were used to simulate the deprotonation energies of solvated acid clusters. The calculations were performed on solvated neutral (HA) and cationic (HB+) acids clusters containing 160 and 480 water molecules using configurations sampled from molecular dynamics simulations. Consistently, the ωB97X-D/EFP model performed the best when using a minimal QM region size. The performance for the other potentials appears to be highly sensitive to the charge character of the acid/base pair. Neutral acids display the expected trend that semi-empirical methods generally perform better than TIP3P; however, an opposite trend was observed for the cationic acids. Additionally, electronic embedding provided an improvement over mechanical embedding for the cationic systems, but not the neutral acids. For the best performing ωB97X-D/EFP model, a QM region containing about 6% of the total number of solvent molecules is needed to approach within 10 kJ mol−1 of the pure QM result if the QM region was chosen based on the distance from the reaction centre.
The Effect of Vicinal Difluorination on the Conformation and Potency of Histone Deacetylase Inhibitors
Histone deacetylase enzymes (HDACs) are potential targets for the treatment of cancer and other diseases, but it is challenging to design isoform-selective agents. In this work, we created new analogs of two established but non-selective HDAC inhibitors. We decorated the central linker chains of the molecules with specifically positioned fluorine atoms in order to control the molecular conformations. The fluorinated analogs were screened against a panel of 11 HDAC isoforms, and minor differences in isoform selectivity patterns were observed.
MM/GBSA prediction of relative binding affinities of carbonic anhydrase inhibitors: effect of atomic charges and comparison with Autodock4Zn
Carbonic anhydrase is an attractive drug target for the treatment of many diseases. This paper examines the ability of end-state MM/GBSA methods to rank inhibitors of carbonic anhydrase in terms of their binding affinities. The MM/GBSA binding energies were evaluated using different atomic charge schemes (Mulliken, ESP and NPA) at different levels of theories, including Hartree–Fock, B3LYP-D3(BJ), and M06-2X with the 6–31G(d,p) basis set. For a large test set of 32 diverse inhibitors, the use of B3LYP-D3(BJ) ESP atomic charges yielded the strongest correlation with experiment (R2 = 0.77). The use of the recently enhanced Autodock Vina and zinc optimised AD4Zn force field also predicted ligand binding affinities with moderately strong correlation (R2 = 0.64) at significantly lower computational cost. However, the docked poses deviate significantly from crystal structures. Overall, this study demonstrates the applicability of docking to estimate ligand binding affinities for a diverse range of CA inhibitors, and indicates that more theoretically robust MM/GBSA simulations show promise for improving the accuracy of predicted binding affinities, as long as a validated set of parameters is used.
Peptidomimetic Star Polymers for Targeting Biological Ion Channels
Four end-functionalized star polymers that could attenuate the flow of ionic currents across biological ion channels were first de novo designed computationally, then synthesized and tested experimentally on mammalian K+ channels. The 4-arm ethylene glycol conjugate star polymers with lysine or a tripeptide attached to the end of each arm were specifically designed to mimic the action of scorpion toxins on K+ channels. Molecular dynamics simulations showed that the lysine side chain of the polymers physically occludes the pore of Kv1.3, a target for immuno-suppression therapy. Two of the compounds tested were potent inhibitors of Kv1.3. The dissociation constants of these two compounds were computed to be 0.1 μM and 0.7 μM, respectively, within 3-fold to the values derived from subsequent experiments. These results demonstrate the power of computational methods in molecular design and the potential of star polymers as a new infinitely modifiable platform for ion channel drug discovery.
Eigenvector centrality for characterization of protein allosteric pathways
Determining the principal energy-transfer pathways responsible for allosteric communication in biomolecules remains challenging, partially due to the intrinsic complexity of the systems and the lack of effective characterization methods. In this work, we introduce the eigenvector centrality metric based on mutual information to elucidate allosteric mechanisms that regulate enzymatic activity. Moreover, we propose a strategy to characterize the range of correlations that underlie the allosteric processes. We use the V-type allosteric enzyme imidazole glycerol phosphate synthase (IGPS) to test the proposed methodology. The eigenvector centrality method identifies key amino acid residues of IGPS with high susceptibility to effector binding. The findings are validated by solution NMR measurements yielding important biological insights, including direct experimental evidence for interdomain motion, the central role played by helix hα 1, and the short-range nature of correlations responsible for the allosteric mechanism. Beyond insights on IGPS allosteric pathways and the nature of residues that could be targeted by therapeutic drugs or site-directed mutagenesis, the reported findings demonstrate the eigenvector centrality analysis as a general cost-effective methodology to gain fundamental understanding of allosteric mechanisms at the molecular level.
Triplet–triplet energy transfer in artificial and natural photosynthetic antennas
In photosynthetic organisms, protection against photooxidative stress due to singlet oxygen is provided by carotenoid molecules, which quench chlorophyll triplet species before they can sensitize singlet oxygen formation. In anoxygenic photosynthetic organisms, in which exposure to oxygen is low, chlorophyll-to-carotenoid triplet–triplet energy transfer (T-TET) is slow, in the tens of nanoseconds range, whereas it is ultrafast in the oxygen-rich chloroplasts of oxygen-evolving photosynthetic organisms. To better understand the structural features and resulting electronic coupling that leads to T-TET dynamics adapted to ambient oxygen activity, we have carried out experimental and theoretical studies of two isomeric carotenoporphyrin molecular dyads having different conformations and therefore different interchromophore electronic interactions. This pair of dyads reproduces the characteristics of fast and slow T-TET, including a resonance Raman-based spectroscopic marker of strong electronic coupling and fast T-TET that has been observed in photosynthesis. As identified by density functional theory (DFT) calculations, the spectroscopic marker associated with fast T-TET is due primarily to a geometrical perturbation of the carotenoid backbone in the triplet state induced by the interchromophore interaction. This is also the case for the natural systems, as demonstrated by the hybrid quantum mechanics/molecular mechanics (QM/MM) simulations of light-harvesting proteins from oxygenic (LHCII) and anoxygenic organisms (LH2). Both DFT and electron paramagnetic resonance (EPR) analyses further indicate that, upon T-TET, the triplet wave function is localized on the carotenoid in both dyads.
Polyphenylglyoxamide-Based Amphiphilic Small Molecular Peptidomimetics as Antibacterial Agents with Anti-Biofilm Activity
The rapid emergence of drug-resistant bacteria is a major global health concern. Antimicrobial peptides (AMPs) and peptidomimetics have arisen as a new class of antibacterial agents in recent years in an attempt to overcome antibiotic resistance. A library of phenylglyoxamide-based small molecular peptidomimetics was synthesised by incorporating an N-alkylsulfonyl hydrophobic group with varying alkyl chain lengths and a hydrophilic cationic group into a glyoxamide core appended to phenyl ring systems. The quaternary ammonium iodide salts 16d and 17c showed excellent minimum inhibitory concentration (MIC) of 4 and 8 μM (2.9 and 5.6 μg/mL) against Staphylococcus aureus, respectively, while the guanidinium hydrochloride salt 34a showed an MIC of 16 μM (8.5 μg/mL) against Escherichia coli. Additionally, the quaternary ammonium iodide salt 17c inhibited 70% S. aureus biofilm formation at 16 μM. It also disrupted 44% of pre-established S. aureus biofilms at 32 μM and 28% of pre-established E. coli biofilms 64 μM, respectively. A cytoplasmic membrane permeability study indicated that the synthesised peptidomimetics acted via disruption and depolarisation of membranes. Moreover, the quaternary ammonium iodide salts 16d and 17c were non-toxic against human cells at their therapeutic dosages against S. aureus.
Molecular Geometries and Vibrational Contributions to Reaction Thermochemistry Are Surprisingly Insensitive to Choice of Basis Set
Calculation of molecular geometries and harmonic vibrational frequencies are pre-requisites for thermochemistry calculations. Contrary to conventional wisdom, this paper demonstrates that quantum chemical predictions of the thermochemistry of many chemical reactions appear to be very insensitive to the choice of basis sets. For a large test set of 80 diverse organic and transition-metal containing reactions, variations in reaction free energy based on geometries and frequencies calculated using a variety of double and triple-zeta basis sets from the Pople, Jensen, Ahlrichs and Dunning families are typically less than 4 kJ mol-1, especially when the quasiharmonic oscillator correction is applied to mitigate the effects of low-frequency modes. Our analysis indicates that for many organic molecules and their transition states, high-level rev-DSD-PBEP86-D4 and DLPNO-CCSD(T)/(aug-)cc-pVTZ single point energies usually vary by less than 2 kJ mol-1 on DFT geometries optimised using basis sets ranging from 6-31+G(d) to aug-pc-seg-2 and aug-cc-pVTZ. In cases where these single-point energies vary significantly, indicating sensitivity of molecular geometries to choice of basis set, there is often substantial cancellation of errors when the reaction energy or barrier is calculated. The study concludes that the choice of basis set for molecular geometry and frequencies, particularly hose considered in this study, is not critical for the accuracy of thermochemistry calculations.
Eigenvector Centrality Distribution for Characterization of Protein Allosteric Pathways
Determining the principal energy pathways for allosteric communication in biomolecules, that occur as a result of thermal motion, remains challenging due to the intrinsic complexity of the systems involved. Graph theory provides an approach for making sense of such complexity, where allosteric proteins can be represented as networks of amino acids. In this work, we establish the eigenvector centrality metric in terms of the mutual information, as a mean of elucidating the allosteric mechanism that regulates the enzymatic activity of proteins. Moreover, we propose a strategy to characterize the range of the physical interactions that underlie the allosteric process. In particular, the well known enzyme, imidazol glycerol phosphate synthase (IGPS), is utilized to test the proposed methodology. The eigenvector centrality measurement successfully describes the allosteric pathways of IGPS, and allows to pinpoint key amino acids in terms of their relevance in the momentum transfer process. The resulting insight can be utilized for refining the control of IGPS activity, widening the scope for its engineering. Furthermore, we propose a new centrality metric quantifying the relevance of the surroundings of each residue. In addition, the proposed technique is validated against experimental solution NMR measurements yielding fully consistent results. Overall, the methodologies proposed in the present work constitute a powerful and cost effective strategy to gain insight on the allosteric mechanism of proteins.