Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
73
result(s) for
"Ho, Yi-hsuan"
Sort by:
Targeting negative regulation of p53 by MDM2 and WIP1 as a therapeutic strategy in cutaneous melanoma
2018
Background:Cutaneous melanoma is the most serious skin malignancy and new therapeutic strategies are needed for advanced melanoma. TP53 mutations are rare in cutaneous melanoma and hence activation of wild-type p53 is a potential therapeutic strategy in cutaneous melanoma. Here, we investigated the WIP1 inhibitor, GSK2830371, and MDM2-p53 binding antagonists (nutlin-3, RG7388 and HDM201) alone and in combination treatment in cutaneous melanoma cell lines and explored the mechanistic basis of these responses in relation to the genotype and induced gene expression profile of the cells.Methods:A panel of three p53WT (A375, WM35 and C8161) and three p53MUT (WM164, WM35-R and CHL-1) melanoma cell lines were used. The effects of MDM2 and WIP1 inhibition were evaluated by growth inhibition and clonogenic assays, immunoblotting, qRT-PCR gene expression profiling and flow cytometry.Results:GSK2830371, at doses ([els]10 μM) that alone had no growth-inhibitory or cytotoxic effects on the cells, nevertheless significantly potentiated the growth-inhibitory and clonogenic cell killing effects of MDM2 inhibitors in p53WT but not p53MUT melanoma cells, indicating the potentiation worked in a p53-dependent manner. The siRNA-mediated knockdown of p53 provided further evidence to support the p53 dependence. GSK2830371 increased p53 stabilisation through Ser15 phosphorylation and consequent Lys382 acetylation, and decreased ubiquitination and proteasome-dependent degradation when it was combined with MDM2 inhibitors. These changes were at least partly ATM mediated, shown by reversal with the ATM inhibitor (KU55933). GSK2830371 enhanced the induction of p53 transcriptional target genes, cell cycle arrest and apoptosis.Conclusions:GSK2830371, a WIP1 inhibitor, at doses with no growth-inhibitory activity alone, potentiated the growth-inhibitory and cytotoxic activity of MDM2 inhibitors by increasing phosphorylation, acetylation and stabilisation of p53 in cutaneous melanoma cells in a functional p53-dependent manner.
Journal Article
Pathway connectivity and signaling coordination in the yeast stress‐activated signaling network
by
Ho, Yi‐Hsuan
,
Berry, David B
,
Coon, Joshua J
in
Biology
,
Cell cycle
,
Cell Cycle Proteins - metabolism
2014
Stressed cells coordinate a multi‐faceted response spanning many levels of physiology. Yet knowledge of the complete stress‐activated regulatory network as well as design principles for signal integration remains incomplete. We developed an experimental and computational approach to integrate available protein interaction data with gene fitness contributions, mutant transcriptome profiles, and phospho‐proteome changes in cells responding to salt stress, to infer the salt‐responsive signaling network in yeast. The inferred subnetwork presented many novel predictions by implicating new regulators, uncovering unrecognized crosstalk between known pathways, and pointing to previously unknown ‘hubs’ of signal integration. We exploited these predictions to show that Cdc14 phosphatase is a central hub in the network and that modification of RNA polymerase II coordinates induction of stress‐defense genes with reduction of growth‐related transcripts. We find that the orthologous human network is enriched for cancer‐causing genes, underscoring the importance of the subnetwork's predictions in understanding stress biology.
Synopsis
An experimental and computational pipeline was developed to infer the yeast salt‐activated signaling network. The resulting network provides new insights into how cells integrate upstream signals to produce a coordinated transcriptional response to stress.
An integer linear programming method for integrating disparate high‐throughput datasets was developed and used to infer the yeast signaling network activated by salt stress.
The network shows high connectivity between what are typically considered distinct pathways.
The phosphatase Cdc14 coordinates several aspects of the stress response, and RNA Pol II modification is a key regulatory point for the induction of stress‐defense genes with repression of growth‐related genes.
The orthologous human network is enriched for cancer‐related genes, underscoring the importance of stress‐responsive signaling networks in human disease biology.
Graphical Abstract
An experimental and computational pipeline was developed to infer the yeast salt‐activated signaling network. The resulting network provides new insights into how cells integrate upstream signals to produce a coordinated transcriptional response to stress.
Journal Article
Conformational alteration in glycan induces phospholipase Cβ1 activation and angiogenesis
2022
Background
In endothelial cells, phospholipase C (PLC) β1-activated Ca
2+
is a crucial second messenger for the signaling pathways governing angiogenesis. PLCβ1 is inactivated by complexing with an intracellular protein called translin-associated factor X (TRAX). This study demonstrates specific interactions between Globo H ceramide (GHCer) and TRAX, which highlight a new angiogenic control through PLCβ1 activation.
Methods
Globo-series glycosphingolipids (GSLs), including GHCer and stage-specific embryonic antigen-3 ceramide (SSEA3Cer), were analyzed using enzyme-linked immunosorbent assay (ELISA) and Biacore for their binding with TRAX. Angiogenic activities of GSLs in human umbilical vein endothelial cells (HUVECs) were evaluated. Molecular dynamics (MD) simulation was used to study conformations of GSLs and their molecular interactions with TRAX. Fluorescence resonance energy transfer (FRET) analysis of HUVECs by confocal microscopy was used to validate the release of PLCβ1 from TRAX. Furthermore, the in vivo angiogenic activity of extracellular vesicles (EVs) containing GHCer was confirmed using subcutaneous Matrigel plug assay in mice.
Results
The results of ELISA and Biacore analysis showed a stable complex between recombinant TRAX and synthetic GHCer with K
d
of 40.9 nM. In contrast, SSEA3Cer lacking a fucose residue of GHCer at the terminal showed ~ 1000-fold decrease in the binding affinity. These results were consistent with their angiogenic activities in HUVECs. The MD simulation indicated that TRAX interacted with the glycan moiety of GHCer at amino acid Q223, Q219, L142, S141, and E216. At equilibrium the stable complex maintained 4.6 ± 1.3 H-bonds. TRAX containing double mutations with Q223A and Q219A lost its ability to interact with GHCer in both MD simulation and Biacore assays. Removal of the terminal fucose from GHCer to become SSEA3Cer resulted in decreased H-bonding to 1.2 ± 1.0 by the MD simulation. Such specific H-bonding was due to the conformational alteration in the whole glycan which was affected by the presence or absence of the fucose moiety. In addition, ELISA, Biacore, and in-cell FRET assays confirmed the competition between GHCer and PLCβ1 for binding to TRAX. Furthermore, the Matrigel plug assay showed robust vessel formation in the plug containing tumor-secreted EVs or synthetic GHCer, but not in the plug with SSEA3Cer. The FRET analysis also indicated the disruption of colocalization of TRAX and PLCβ1 in cells by GHCer derived from EVs.
Conclusions
Overall, the fucose residue in GHCer dictated the glycan conformation for its complexing with TRAX to release TRAX-sequestered PLCβ1, leading to Ca
2+
mobilization in endothelial cells and enhancing angiogenesis in tumor microenvironments.
Journal Article
Different phosphoisoforms of RNA polymerase II engage the Rtt103 termination factor in a structurally analogous manner
by
Gasch, Audrey P.
,
Nemec, Corey M.
,
Heidemann, Martin
in
Amino Acid Sequence
,
Arginine
,
Biochemistry
2017
The carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) orchestrates dynamic recruitment of specific cellular machines during different stages of transcription. Signature phosphorylation patterns of Y₁S₂P₃T₄S₅P₆S₇ heptapeptide repeats of the CTD engage specific “readers.” Whereas phospho-Ser5 and phospho-Ser2 marks are ubiquitous, phospho-Thr4 is reported to only impact specific genes. Here, we identify a role for phospho-Thr4 in transcription termination at noncoding small nucleolar RNA (snoRNA) genes. Quantitative proteomics reveals an interactome of known readers as well as protein complexes that were not known to rely on Thr4 for association with Pol II. The data indicate a key role for Thr4 in engaging the machinery used for transcription elongation and termination. We focus on Rtt103, a protein that binds phospho-Ser2 and phospho-Thr4 marks and facilitates transcription termination at protein-coding genes. To elucidate how Rtt103 engages two distinct CTD modifications that are differentially enriched at noncoding genes, we relied on NMR analysis of Rtt103 in complex with phospho-Thr4– or phospho-Ser2–bearing CTD peptides. The structural data reveal that Rtt103 interacts with phospho-Thr4 in a manner analogous to its interaction with phospho-Ser2–modified CTD. The same set of hydrogen bonds involving either the oxygen on phospho-Thr4 and the hydroxyl on Ser2, or the phosphate on Ser2 and the Thr4 hydroxyl, can be formed by rotation of an arginine side chain, leaving the intermolecular interface otherwise unperturbed. This economy of design enables Rtt103 to engage Pol II at distinct sets of genes with differentially enriched CTD marks.
Journal Article
Exploiting the yeast stress-activated signaling network to inform on stress biology and disease signaling
2015
Healthy cells utilize intricate systems to monitor their environment and mount robust responses in the event of cellular stress. Whether stress arises from external insults or defects due to mutation and disease, cells must be able to respond precisely to mount the appropriate defenses. Multi-faceted stress responses are generally coupled with arrest of growth and cell-cycle progression, which both limits the transmission of damaged materials and serves to reallocate limited cellular resources toward defense. Therefore, stress defense versus rapid growth represent competing interests in the cell. How eukaryotic cells set the balance between defense versus proliferation, and in particular knowledge of the regulatory networks that control this decision, are poorly understood. In this perspective, we expand upon our recent work inferring the stress-activated signaling network in budding yeast, which captures pathways controlling stress defense and regulators of growth and cell-cycle progression. We highlight similarities between the yeast and mammalian stress responses and explore how stress-activated signaling networks in yeast can inform on signaling defects in human cancers.
Journal Article
TP53 mutant cell lines selected for resistance to MDM2 inhibitors retain growth inhibition by MAPK pathway inhibitors but a reduced apoptotic response
by
Lovat, Penny
,
Wu, Chiao-En
,
Lunec, John
in
Apoptosis
,
Biomedical and Life Sciences
,
Biomedicine
2019
Background
Emergence of resistance to molecular targeted therapy constitutes a limitation to clinical benefits in cancer treatment. Cross-resistance commonly happens with chemotherapeutic agents but might not with targeted agents.
Methods
In the current study,
TP53
wild-type cell lines with druggable MAPK pathway mutations [
BRAF
V600E
(WM35) or
NRAS
Q61K
(SJSA-1)] were compared with their
TP53
mutant sublines (WM35-R, SN40R2) derived by selection for resistance to MDM2/p53 binding antagonists.
Results
The continued presence of the druggable MAPK pathway targets in the
TP53
mutant (
TP53
MUT
) WM35-R and SN40R2 cells was confirmed. Trametinib and vemurafenib were tested on the paired WM35/WM35-R and SJSA-1/SN40R2 cells and similar growth inhibitory effects on the paired cell lines was observed. However, apoptotic responses to trametinib and vemurafenib were greater in WM35 than WM35-R, evidenced by FACS analysis and caspase 3/7 activity, indicating that these MAPK inhibitors acted on the cells partially through p53-regulated pathways. SiRNA mediated p53 knockdown in WM35 replicated the same pattern of response to trametinib and vemurafenib as seen in WM35-R, confirming that p53 plays a role in trametinib and vemurafenib induced apoptosis. In contrast, these differences in apoptotic response between WM35 and WM35-R were not seen with the SJSA-1/SN40R2 cell line pair. This is likely due to p53 suppression by overexpressed MDM2 in SJSA-1.
Conclusion
The TP53
MUT
cells selected by resistance to MDM2 inhibitors nevertheless retained growth inhibitory but not apoptotic response to MAPK pathway inhibitors.
Journal Article
Integrating the resource-based view and transaction cost economics in immigrant business performance
by
Ho, Elly Yi-Hsuan
,
Yang, Xiaohua
,
Chang, Artemis
in
Business and Management
,
Business operations
,
Costs
2012
This paper presents a new integrated framework that integrates the resource-based view and transaction cost economics to explain the phenomenon of immigrant entrepreneurship. We extend the existing literature on immigrant entrepreneurship by identifying different types of ethnic network resources and demonstrating how these resources interact with transaction costs in the context of Chinese immigrants. Thus, our study contributes to the literature by providing a theoretical framework which identifies mechanisms immigrant entrepreneurs use to strategically deploy resources to minimize costs and maximize performance outcomes.
Journal Article
Noncanonical CTD kinases regulate RNA polymerase II in a gene-class-specific manner
2019
Phosphorylation of the carboxyl-terminal domain (CTD) of the largest subunit of RNA polymerase II (Pol II) governs stage-specific interactions with different cellular machines. The CTD consists of Y
1
S
2
P
3
T
4
S
5
P
6
S
7
heptad repeats and sequential phosphorylations of Ser7, Ser5 and Ser2 occur universally at Pol II-transcribed genes. Phosphorylation of Thr4, however, appears to selectively modulate transcription of specific classes of genes. Here, we identify ten new Thr4 kinases from different kinase structural groups. Irreversible chemical inhibition of the most active Thr4 kinase, Hrr25, reveals a novel role for this kinase in transcription termination of specific class of noncoding snoRNA genes. Genome-wide profiles of Hrr25 reveal a selective enrichment at 3ʹ regions of noncoding genes that display termination defects. Importantly, phospho-Thr4 marks placed by Hrr25 are recognized by Rtt103, a key component of the termination machinery. Our results suggest that these uncommon CTD kinases place phospho-Thr4 marks to regulate expression of targeted genes.
Ten new RNA polymerase II kinases were identified, of these Hrr25 was engineered to enable covalent and noncovalent chemical inhibition in vivo, revealing that this kinase regulates polymerase function at noncoding snoRNA genes.
Journal Article
ATM Dependent DUSP6 Modulation of p53 Involved in Synergistic Targeting of MAPK and p53 Pathways with Trametinib and MDM2 Inhibitors in Cutaneous Melanoma
2018
MAPK and p14ARF–MDM2–p53 pathways are critical in cutaneous melanomas. Here, synergistic combination of the MEK inhibitor, trametinib, with MDM2 inhibitors, nutlin-3/RG7388/HDM201, and the mechanistic basis of responses, for BRAFV600E and p53WT melanoma cells, are reported. The combination treatments induced higher levels of p53 target gene transcripts and protein products, resulting in increased cell cycle arrest and apoptosis compared with MDM2 inhibitors alone, suggesting trametinib synergized with MDM2 inhibitors via upregulation of p53-dependent pathways. In addition, DUSP6 phosphatase involvement was indicated by downregulation of its mRNA and protein following pERK reduction by trametinib. Furthermore, suppression of DUSP6 by siRNA, or inhibition with the small molecule inhibitor, BCI, at a dose without cytotoxicity, potentiated the effect of MDM2 inhibitors through increased ATM-dependent p53 phosphorylation, as demonstrated by complete reversal with the ATM inhibitor, KU55933. Trametinib synergizes with MDM2 inhibitors through a novel DUSP6 mechanism in BRAFV600E and p53WT melanoma cells, in which DUSP6 regulation of p53 phosphorylation is mediated by ATM. This provides a new therapeutic rationale for combination treatments involving activation of the ATM/p53 pathway and MAPK pathway inhibition.
Journal Article
Effect of C-terminal truncation on enzyme properties of recombinant amylopullulanase from Thermoanaerobacter pseudoethanolicus
by
Lin, Hsu-Yang
,
Lin, Hui-Ju
,
Lin, Fu-Pang
in
Amino Acid Sequence
,
Amino acids
,
Animal, plant and microbial ecology
2012
The smallest and enzymatically active molecule, TetApuQ818, was localized within the C-terminal Q818 amino acid residue after serial C-terminal truncation analysis of the recombinant amylopullulanase molecule (TetApuM955) from
Thermoanaerobacter pseudoethanolicus
. Kinetic analyses indicated that the overall catalytic efficiency,
k
cat
/
K
m
, of TetApuQ818 was 8–32% decreased for the pullulan and the soluble starch substrate, respectively. Changes to the substrate affinity,
K
m
, and the turnover rate,
k
cat
, were decreased significantly in both enzymatic activities of TetApuQ818. TetApuQ818 exhibited less thermostability than TetApuM955 when the temperature was raised above 85°C, but it had similar substrate-binding ability and hydrolysis products toward various substrates as TetApuM955 did. Both enzymes showed similar spectroscopies of fluorescence and circular dichroism, suggesting the active folding conformation was maintained after this C-terminal Q818 deletion. This study suggested that the binding ability of insoluble starch by TetApuM955 did not rely on the putative C-terminal carbohydrate binding module family 20 (CBM20) and two FnIII regions of TetApu, though the integrity of the AamyC module of TetApuQ818 was required for the enzyme activity.
Journal Article