Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
293 result(s) for "Hobbs, Matthew"
Sort by:
Trust in nuclear disarmament verification
In the nuclear arena, disarmament verification is often viewed purely in terms of a dispassionate, scientific process. Yet this view is fundamentally flawed since the technical impossibility of 100 per cent verification opens the door to a host of complex issues and questions regarding the process and its outcomes. Central among these is the fact that those involved in any verification inspection process must inevitably conduct their work in a space that falls well short of absolute certainty. The lines between scientific enquiry and human psychology can become blurred and outcomes have the potential to be influenced by perceptions. Drawing on extensive empirical evidence, the authors explore the complex interplay between evidence-based judgements and perceptions of intentions that frames the science of verification. The book provides new insights into the role and influence of human factors in the verification process.
High-Resolution Hyperspectral Imaging Using Low-Cost Components: Application within Environmental Monitoring Scenarios
High-resolution hyperspectral imaging is becoming indispensable, enabling the precise detection of spectral variations across complex, spatially intricate targets. However, despite these significant benefits, currently available high-resolution set-ups are typically prohibitively expensive, significantly limiting their user base and accessibility. These limitations can have wider implications, limiting data collection opportunities, and therefore our knowledge, across a wide range of environments. In this article we introduce a low-cost alternative to the currently available instrumentation. This instrument provides hyperspectral datasets capable of resolving spectral variations in mm-scale targets, that cannot typically be resolved with many existing low-cost hyperspectral imaging alternatives. Instrument metrology is provided, and its efficacy is demonstrated within a mineralogy-based environmental monitoring application highlighting it as a valuable addition to the field of low-cost hyperspectral imaging.
Obesogenic environments and obesity: a comment on ‘Are environmental area characteristics at birth associated with overweight and obesity in school-aged children? Findings from the SLOPE (Studying Lifecourse Obesity PrEdictors) population-based cohort in the south of England’
Since 1980, the prevalence of obesity has doubled in more than 70 countries [1]. Worldwide, in 2015, the prevalence of children and adults with obesity was 5 and 12%, respectively. This equates to 107.7 million children and 603.7 million adults [1]. The physical and psychological consequences of obesity are well documented, including an increased risk of type 2 diabetes, adverse cardiovascular outcomes, discrimination and reduced self-esteem. Moreover, it was estimated that obesity accounted for approximately 4 million deaths and 120 million disability-adjusted life-years worldwide in 2015 [1]. The relationship between our health and the environment or places in which we reside and work, day to day, dates back centuries. It was Hippocrates who first argued that health was a product of environmental factors and highlighted a need for harmony between the individual, social and natural environment. Fast-forward to the present day and the term ‘obesogenic environment’ has been coined to refer to the influences that the surroundings, opportunities or conditions of life have on promoting obesity in individuals and populations [2]. While the causes of obesity are complex and obesity is multifaceted in aetiology, it is plausible that the condition is driven largely by environmental factors, which undermine the self-regulatory capacity that people have to make responsible decisions about personal diet and physical activity [3]. For instance, it is likely that the increased availability, accessibility and affordability of energy-dense foods, along with intense marketing of such foods, are examples of such environmental factors that, at least partly, explain excess energy intake and weight gain [4].
Aerosol jet printing polymer dispersed liquid crystals on highly curved optical surfaces and edges
We demonstrate a new technique for producing Polymer Dispersed Liquid Crystal (PDLC) devices utilising aerosol jet printing (AJP). PDLCs require two substrates to act as scaffold for the Indium Tin Oxide electrodes, which restricts the device geometries. Our approach precludes the requirement for the second substrate by printing the electrode directly onto the surface of the PDLC, which is also printed. The process has the potential to be precursory to the implementation of non-contact printing techniques for a variety of liquid crystal-based devices on non-planar substrates. We report the demonstration of direct deposition of PDLC films onto non-planar optical surfaces, including a functional device printed over the 90° edge of a prism. Scanning Electron Microscopy is used to inspect surface features of the polymer electrodes and the liquid crystal domains in the host polymer. The minimum relaxation time of the PDLC was measured at 1.3 ms with an 800 Hz, 90 V, peak-to-peak (Vpp) applied AC field. Cross-polarised transmission is reduced by up to a factor of 3.9. A transparent/scattering contrast ratio of 1.4 is reported between 0 and 140 V at 100 Hz.
Si APD-Based High Speed Infrared Radiation Thermometry for Analysing the Temperature Instability of a Combustion Chamber
This study introduces a novel approach to analysing the combustion process using a high-speed, non-contact, optical fibre-coupled Si avalanche photodiode (APD)-based infrared radiation thermometer (IRT). The Si APD-IRT, combined with an optimised field-programmable gate array (FPGA)-based digital design, achieves a response time of 1 µs, faster than commercially available instruments. Our instrument captures the entire ignition and reignition cycle of a Jet A kerosene droplet with high temporal precision within a combustion chamber, a feat impossible with traditional thermocouples. The FPGA module was validated with a 1 µs data acquisition time, using a 40 MHz onboard clock, achieving throughput of 0.64 Gbps with efficiencies of 0.062 Mbps/slice in lookup tables (LUTs), confirming a low-area design compared to conventional FPGAs. The IRT achieves a root mean square (RMS) noise specification of 0.5 °C at a 1 µs acquisition time and a target temperature of approximately 1000 °C. A measurement uncertainty of within ±0.25% °C + 2 °C confirms that it lies within the bounds of commercial instrumentations. Our instrument was demonstrated to capture transient temperature fluctuations during combustion and characterises Jet A kerosene fuel droplets, laying the foundation for understanding sustainable aviation fuels (SAFs) and their role in transitioning from aviation fossil fuels, enabling effective research and development.
InAsSb Photodiode Fibre Optic Thermometry for High-Speed, near-Ambient Temperature Measurements
Infrared radiation thermometers (IRTs) overcome many of the limitations of thermocouples, particularly responsiveness and calibration drift. The main challenge with radiation thermometry is the fast and reliable measurement of temperatures close to room temperature. A new IRT which is sensitive to wavelengths between 3 μm and 11 μm was developed and tested in a laboratory setting. It is based on an uncooled indium arsenide antimony (InAsSb) photodiode, a transimpedance amplifier, and a silver halogenide fibre optic cable transmissive in the mid- to long-wave infrared region. The prototype IRT was capable of measuring temperatures between 35 °C and 100 °C at an integration time of 5 ms and a temperature range between 40 °C and 100 °C at an integration time of 1 ms, with a root mean square (RMS) noise level of less than 0.5 °C. The thermometer was calibrated against Planck’s law using a five-point calibration, leading to a measurement uncertainty within ±1.5 °C over the aforementioned temperature range. The thermometer was tested against a thermocouple during drilling operations of polyether ether ketone (PEEK) plastic to measure the temperature of the drill bit during the material removal process. Future versions of the thermometer are intended to be used as a thermocouple replacement in high-speed, near-ambient temperature measurement applications, such as electric motor condition monitoring; battery protection; and machining of polymers and composite materials, such as carbon-fibre-reinforced plastic (CFRP).
InAsSb Photodiode-Based Infrared Radiation Thermometer for the Investigation of Droplet Surface Temperature Dynamics Within an Enclosed Combustion Chamber
This study presents a novel approach to analysing the early stages of the combustion process by measuring the surface temperature of a kerosene droplet from its point of ignition through to its evaporation. An indium arsenide antimonide (InAsSb) photodiode-based infrared radiation thermometer (IRT), operating between 3 μm and 11 μm in wavelength, was designed to enable non-contact, low-temperature sensing with an acquisition time of 500 μs. Integrated with a data acquisition unit (DAQ), the instrument captures the transient combustion stages occurring below the droplet’s boiling point of 300 °C. The instrument was assessed against industry standards and demonstrated a measurement uncertainty of ±2 °C, confirming suitability within the performance bounds of commercial instrumentation. The IRT was deployed to measure the temperature of a kerosene droplet within an enclosed combustion chamber upon ignition, in direct comparison with a contact thermocouple. The instrument demonstrated its capability to measure the droplet’s surface temperature changes throughout its early-stage combustion. Furthermore, the wavelength specificity of the IRT eliminates thermal interference from the subsequent flame, a capability which contact thermocouples lack, thereby enabling measurement of the droplet’s temperature in isolation. This study focuses on single-droplet Jet A kerosene combustion under controlled conditions, using a transferable methodology adaptable to other fuels and environments. It supports the use of IRT for non-contact temperature measurement of fuel droplets and early-stage combustion, aiding fuel characterisation and the development of future fuels such as SAF.
The good, the bad, and the environment: developing an area-based measure of access to health-promoting and health-constraining environments in New Zealand
Background Accounting for the co-occurrence of multiple environmental influences is a more accurate reflection of population exposure than considering isolated influences, aiding in understanding the complex interactions between environments, behaviour and health. This study examines how environmental ‘goods’ such as green spaces and environmental ‘bads’ such as alcohol outlets co-occur to develop a nationwide area-level healthy location index (HLI) for New Zealand. Methods Nationwide data were collected, processed, and geocoded on a comprehensive range of environmental exposures. Health-constraining ‘bads’ were represented by: (i) fast-food outlets, (ii) takeaway outlets, (iii) dairy outlets and convenience stores, (iv) alcohol outlets, (v) and gaming venues. Health-promoting ‘goods’ were represented by: (i) green spaces, (ii) blue spaces, (iii) physical activity facilities, (iv) fruit and vegetable outlets, and (v) supermarkets. The HLI was developed based on ranked access to environmental domains. The HLI was then used to investigate socio-spatial patterning by area-level deprivation and rural/urban classification. Results Results showed environmental ‘goods’ and ‘bads’ co-occurred together and were patterned by area-level deprivation. The novel HLI shows that the most deprived areas of New Zealand often have the most environmental ‘bads’ and less access to environmental ‘goods’. Conclusions The index, that is now publicly available, is able to capture both inter-regional and local variations in accessibility to health-promoting and health-constraining environments and their combination. Results in this study further reinforce the need to embrace the multidimensional nature of neighbourhood and place not only when designing health-promoting places, but also when studying the effect of existing built environments on population health.
Low-Cost Hyperspectral Imaging System: Design and Testing for Laboratory-Based Environmental Applications
The recent surge in the development of low-cost, miniaturised technologies provides a significant opportunity to develop miniaturised hyperspectral imagers at a fraction of the cost of currently available commercial set-ups. This article introduces a low-cost laboratory-based hyperspectral imager developed using commercially available components. The imager is capable of quantitative and qualitative hyperspectral measurements, and it was tested in a variety of laboratory-based environmental applications where it demonstrated its ability to collect data that correlates well with existing datasets. In its current format, the imager is an accurate laboratory measurement tool, with significant potential for ongoing future developments. It represents an initial development in accessible hyperspectral technologies, providing a robust basis for future improvements.
A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children
Physical activity (PA) and sedentary behaviour (SB) of pre-school aged children are associated with important health and developmental outcomes. Accurate measurement of these behaviours in young children is critical for research and practice in this area. The aim of this review was to examine the validity, reliability, and feasibility of measurement tools used to assess PA and SB of pre-school aged children. Searches of electronic databases, and manual searching, were conducted to identify articles that examined the measurement properties (validity, reliability or feasibility) of measurement tools used to examine PA and/or SB of pre-school aged children (3–7 years old). Following screening, data were extracted and risk of bias assessment completed on all included articles. A total of 69 articles, describing 75 individual studies were included. Studies assessed measurement tools for PA ( n  = 27), SB ( n  = 5), and both PA and SB ( n  = 43). Outcome measures of PA and SB differed between studies (e.g. moderate to vigorous activity, step count, posture allocation). Most studies examined the measurement properties of one measurement tool only ( n  = 65). Measurement tools examined included: calorimetry, direct observation, combined heart rate and accelerometry, heart rate monitors, accelerometers, pedometers, and proxy report (parent, carer or teacher reported) measures (questionnaires or diaries). Studies most frequently assessed the validity (criterion and convergent) ( n  = 65), face and content validity ( n  = 2), test-retest reliability ( n  = 10) and intra-instrument reliability ( n  = 1) of the measurement tools. Feasibility data was abstracted from 41 studies. Multiple measurement tools used to measure PA and SB in pre-school aged children showed some degree of validity, reliability and feasibility, but often for different purposes. Accelerometers, including the Actigraph (in particular GT3X versions), Actical, ActivPAL and Fitbit (Flex and Zip), and proxy reported measurement tools used in combination may be useful for a range of outcome measures, to measure intensity alongside contextual information.