Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
83 result(s) for "Hodson, Leanne"
Sort by:
Hepatic fatty acid synthesis and partitioning: the effect of metabolic and nutritional state
When we consume dietary fat, a series of complex metabolic processes ensures that fatty acids are absorbed, transported around the body and used/stored appropriately. The liver is a central metabolic organ within the human body and has a major role in regulating fat and carbohydrate metabolism. Studying hepatic metabolism in human subjects is challenging; the use of stable isotope tracers and measurement of particles or molecules secreted by the liver such as VLDL-TAG and 3-hydroxybutyrate offers the best insight into postprandial hepatic fatty acid metabolism in human subjects. Diet derived fatty acids are taken up by the liver and mix with fatty acids coming from the lipolysis of adipose tissue, and those already present in the liver (cytosolic TAG) and fatty acids synthesised de novo within the liver from non-lipid precursors (known as de novo lipogenesis). Fatty acids are removed from the liver by secretion as VLDL-TAG and oxidation. Perturbations in these processes have the potential to impact on metabolic health. Whether fatty acids are partitioned towards oxidation or esterification pathways appears to be dependent on a number of metabolic factors; not least ambient insulin concentrations. Moreover, along with the phenotype and lifestyle factors (e.g. habitual diet) of an individual, it is becoming apparent that the composition of the diet (macronutrient and fatty acid composition) may play pivotal roles in determining if intra-hepatic fat accumulates, although what remains to be elucidated is the influence these nutrients have on intra-hepatic fatty acid synthesis and partitioning.
The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state
Nonalcoholic fatty liver disease (NAFLD) is an increasing global public health burden. NAFLD is strongly associated with type 2 diabetes mellitus, obesity and cardiovascular disease and begins with intrahepatic triacylglycerol accumulation. Under healthy conditions, the liver regulates lipid metabolism to meet systemic energy needs in the fed and fasted states. The processes of fatty acid uptake, fatty acid synthesis and the intracellular partitioning of fatty acids into storage, oxidation and secretion pathways are tightly regulated. When one or more of these processes becomes dysregulated, excess lipid accumulation can occur. Although genetic and environmental factors have been implicated in the development of NAFLD, it remains unclear why an imbalance in these pathways begins. The regulation of fatty acid partitioning occurs at several points, including during triacylglycerol synthesis, lipid droplet formation and lipolysis. These processes are influenced by enzyme function, intake of dietary fats and sugars and whole-body metabolism, and are further affected by the presence of obesity or insulin resistance. Insight into how the liver controls fatty acid metabolism in health and how these processes might be affected in disease would offer the potential for new therapeutic treatments for NAFLD to be developed.This Review outlines how diet and metabolic diseases (obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease) affect hepatic fatty acid partitioning.
Dietary carbohydrates and fats in nonalcoholic fatty liver disease
The global prevalence of nonalcoholic fatty liver disease (NAFLD) has dramatically increased in parallel with the epidemic of obesity. Controversy has emerged around dietary guidelines recommending low-fat–high-carbohydrate diets and the roles of dietary macronutrients in the pathogenesis of metabolic disease. In this Review, the topical questions of whether and how dietary fats and carbohydrates, including free sugars, differentially influence the accumulation of liver fat (specifically, intrahepatic triglyceride (IHTG) content) are addressed. Focusing on evidence from humans, we examine data from stable isotope studies elucidating how macronutrients regulate IHTG synthesis and disposal, alter pools of bioactive lipids and influence insulin sensitivity. In addition, we review cross-sectional studies on dietary habits of patients with NAFLD and randomized controlled trials on the effects of altering dietary macronutrients on IHTG. Perhaps surprisingly, evidence to date shows no differential effects between free sugars, with both glucose and fructose increasing IHTG in the context of excess energy. Moreover, saturated fat raises IHTG more than polyunsaturated or monounsaturated fats, with adverse effects on insulin sensitivity, which are probably mediated in part by increased ceramide synthesis. Taken together, the data support the use of diets that have a reduced content of free sugars, refined carbohydrates and saturated fat in the treatment of NAFLD.This Review discusses the role of dietary fats and carbohydrates in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). Studies on the dietary habits of patients with NAFLD, and the effect on liver fat accumulation of altering dietary macronutrients, are also reviewed.
Timing of energy intake and the therapeutic potential of intermittent fasting and time-restricted eating in NAFLD
Non-alcoholic fatty liver disease (NAFLD) represents a major public health concern and is associated with a substantial global burden of liver-related and cardiovascular-related morbidity and mortality. High total energy intake coupled with unhealthy consumption of ultra-processed foods and saturated fats have long been regarded as major dietary drivers of NAFLD. However, there is an accumulating body of evidence demonstrating that the timing of energy intake across a the day is also an important determinant of individual risk for NAFLD and associated metabolic conditions. This review summarises the available observational and epidemiological data describing associations between eating patterns and metabolic disease, including the negative effects of irregular meal patterns, skipping breakfast and night-time eating on liver health. We suggest that that these harmful behaviours deserve greater consideration in the risk stratification and management of patients with NAFLD particularly in a 24-hour society with continuous availability of food and with up to 20% of the population now engaged in shiftwork with mistimed eating patterns. We also draw on studies reporting the liver-specific impact of Ramadan, which represents a unique real-world opportunity to explore the physiological impact of fasting. By highlighting data from preclinical and pilot human studies, we present a further biological rationale for manipulating timing of energy intake to improve metabolic health and discuss how this may be mediated through restoration of natural circadian rhythms. Lastly, we comprehensively review the landscape of human trials of intermittent fasting and time-restricted eating in metabolic disease and offer a look to the future about how these dietary strategies may benefit patients with NAFLD and non-alcoholic steatohepatitis.
Nonalcoholic Fatty Liver Disease in Adults: Current Concepts in Etiology, Outcomes, and Management
Abstract Nonalcoholic fatty liver disease (NAFLD) is a spectrum of disease, extending from simple steatosis to inflammation and fibrosis with a significant risk for the development of cirrhosis. It is highly prevalent and is associated with significant adverse outcomes both through liver-specific morbidity and mortality but, perhaps more important, through adverse cardiovascular and metabolic outcomes. It is closely associated with type 2 diabetes and obesity, and both of these conditions drive progressive disease toward the more advanced stages. The mechanisms that govern hepatic lipid accumulation and the predisposition to inflammation and fibrosis are still not fully understood but reflect a complex interplay between metabolic target tissues including adipose and skeletal muscle, and immune and inflammatory cells. The ability to make an accurate assessment of disease stage (that relates to clinical outcome) can also be challenging. While liver biopsy is still regarded as the gold-standard investigative tool, there is an extensive literature on the search for novel noninvasive biomarkers and imaging modalities that aim to accurately reflect the stage of underlying disease. Finally, although no therapies are currently licensed for the treatment of NAFLD, there are interventions that appear to have proven efficacy in randomized controlled trials as well as an extensive emerging therapeutic landscape of new agents that target many of the fundamental pathophysiological processes that drive NAFLD. It is highly likely that over the next few years, new treatments with a specific license for the treatment of NAFLD will become available. Graphical Abstract Graphical Abstract
Influence of dietary macronutrients on liver fat accumulation and metabolism
The liver is a principal metabolic organ within the human body and has a major role in regulating carbohydrate, fat, and protein metabolism. With increasing rates of obesity, the prevalence of non-alcoholic fatty liver disease (NAFLD) is growing. It remains unclear why NAFLD, which is now defined as the hepatic manifestation of the metabolic syndrome, develops but lifestyle factors such as diet (ie, total calorie and specific nutrient intakes), appear to play a key role. Here we review the available observational and intervention studies that have investigated the influence of dietary macronutrients on liver fat content. Findings from observational studies are conflicting with some reporting that relative to healthy controls, patients with NAFLD consume diets higher in total fat/saturated fatty acids, whilst others find they consume diets higher in carbohydrates/sugars. From the limited number of intervention studies that have been undertaken, a consistent finding is a hypercaloric diet, regardless of whether the excess calories have been provided either as fat, sugar, or both, increases liver fat content. In contrast, a hypocaloric diet decreases liver fat content. Findings from both hyper- and hypo-caloric feeding studies provide some suggestion that macronutrient composition may also play a role in regulating liver fat content and this is supported by data from isocaloric feeding studies; fatty acid composition and/or carbohydrate content/type appear to influence whether there is accrual of liver fat or not. The mechanisms by which specific macronutrients, when consumed as part of an isocaloric diet, cause a change in liver fat remain to be fully elucidated.
The Importance of the Fatty Acid Transporter L-Carnitine in Non-Alcoholic Fatty Liver Disease (NAFLD)
L-carnitine transports fatty acids into the mitochondria for oxidation and also buffers excess acetyl-CoA away from the mitochondria. Thus, L-carnitine may play a key role in maintaining liver function, by its effect on lipid metabolism. The importance of L-carnitine in liver health is supported by the observation that patients with primary carnitine deficiency (PCD) can present with fatty liver disease, which could be due to low levels of intrahepatic and serum levels of L-carnitine. Furthermore, studies suggest that supplementation with L-carnitine may reduce liver fat and the liver enzymes alanine aminotransferase (ALT) and aspartate transaminase (AST) in patients with Non-Alcoholic Fatty Liver Disease (NAFLD). L-carnitine has also been shown to improve insulin sensitivity and elevate pyruvate dehydrogenase (PDH) flux. Studies that show reduced intrahepatic fat and reduced liver enzymes after L-carnitine supplementation suggest that L-carnitine might be a promising supplement to improve or delay the progression of NAFLD.
The influence of dietary fatty acids on liver fat content and metabolism
Non-alcoholic fatty liver disease encompasses a spectrum of conditions from hepatic steatosis through to cirrhosis; obesity is a known risk factor. The liver plays a major role in regulating fatty acid metabolism and perturbations in intrahepatic processes have potential to impact on metabolic health. It remains unclear why intra-hepatocellular fat starts to accumulate, but it likely involves an imbalance between fatty acid delivery to the liver, fatty acid synthesis and oxidation within the liver and TAG export from the liver. As man spends the majority of the day in a postprandial rather than postabsorptive state, dietary fatty acid intake should be taken into consideration when investigating why intra-hepatic fat starts to accumulate. This review will discuss the impact of the quantity and quality of dietary fatty acids on liver fat accumulation and metabolism, along with some of the potential mechanisms involved. Studies investigating the role of dietary fat in liver fat accumulation, although surprisingly limited, have clearly demonstrated that it is total energy intake, rather than fat intake per se , that is a key mediator of liver fat content; hyperenergetic diets increase liver fat whilst hypoenergetic diets decrease liver fat content irrespective of total fat content. Moreover, there is now, albeit limited evidence emerging to suggest the composition of dietary fat may also play a role in liver fat accumulation, with diets enriched in saturated fat appearing to increase liver fat content to a greater extent when compared with diets enriched in unsaturated fats.
Dietary fat quantity and composition influence hepatic lipid metabolism and metabolic disease risk in humans
The excessive accumulation of intrahepatic triglyceride (IHTG) in the liver is a risk factor for metabolic diseases, including type 2 diabetes and cardiovascular disease. IHTG can excessively accumulate owing to imbalances in the delivery, synthesis, storage and disposal of fat to, in and from the liver. Although obesity is strongly associated with IHTG accumulation, emerging evidence suggests that the composition of dietary fat, in addition to its quantity, plays a role in mediating IHTG accumulation. Evidence from human cross-sectional and interventional studies indicates that diets enriched with saturated fat compared to other fat types and carbohydrates produce divergent effects on IHTG content. However, the mechanistic reasons for these observations remain unknown. Given the challenges of investigating such mechanisms in humans, cellular models are needed that can recapitulate human hepatocyte fatty acid metabolism. Here, we review what is known from human studies about how dietary fat, its quantity and composition contribute to IHTG accumulation. We also explore the effects of fatty acid composition on hepatocellular fat metabolism from data generated in cellular models to help explain the divergences observed in in vivo studies.
Metabolic Signatures of Human Adipose Tissue Hypoxia in Obesity
Adipose tissue (AT) hypoxia has been proposed as the cause of obesity-related AT dysfunction, moving the tissue toward a proinflammatory phenotype. In humans, AT oxygenation has been assessed by expression of hypoxia-sensitive genes or direct assessment of O2 tension; the obvious read out of hypoxia, effects on intermediary metabolism, has not been investigated. We used tissue-specific venous catheterization of subcutaneous abdominal AT in humans to investigate oxygen-related metabolic processes, searching for metabolic signatures relating to hypoxia in obesity. O2 delivery to AT was reduced in obesity (P < 0.05). However, O2 consumption was low (<30% of resting forearm skeletal muscle [SM], P < 0.001); this was not related to obesity. AT primarily oxidized glucose, as demonstrated by a respiratory quotient close to 1.0 (higher than SM, P < 0.05). AT was a net producer of lactate, but there was an inverse relationship in venous outflow between lactate-to-pyruvate ratio (a marker of cytosolic redox state) and BMI, suggesting that AT is glycolytic but obese AT is not hypoxic. Although delivery of O2 to the obese AT is reduced, O2 consumption is low, and metabolic signatures of human AT do not support the notion of a hypoxic state in obesity.