Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
62
result(s) for
"Hollingworth, Robert"
Sort by:
Defining Terms for Proactive Management of Resistance to Bt Crops and Pesticides
by
Hollingworth, Robert M.
,
Carrière, Yves
,
Tabashnik, Bruce E.
in
Animals
,
arthropods
,
Bacillus thuringiensis
2014
Evolution of pest resistance to pesticides is an urgent global problem with resistance recorded in at least 954 species of pests, including 546 arthropods, 218 weeds, and 190 plant pathogens. To facilitate understanding and management of resistance, we provide definitions of 50 key terms related to resistance. We confirm the broad, long-standing definition of resistance, which is a genetically based decrease in susceptibility to a pesticide, and the definition of “field-evolved resistance,” which is a genetically based decrease in susceptibility to a pesticide in a population caused by exposure to the pesticide in the field. The impact of field-evolved resistance on pest control can vary from none to severe. We define “practical resistance” as field-evolved resistance that reduces pesticide efficacy and has practical consequences for pest control. Recognizing that resistance is not “all or none” and that intermediate levels of resistance can have a continuum of effects on pest control, we describe five categories of field-evolved resistance and use them to classify 13 cases of field-evolved resistance to five Bacillus thuringiensis (Bt) toxins in transgenic corn and cotton based on monitoring data from five continents for nine major pest species. We urge researchers to publish and analyze their resistance monitoring data in conjunction with data on management practices to accelerate progress in determining which actions will be most useful in response to specific data on the magnitude, distribution, and impact of resistance.
Journal Article
Deposition, Diagenesis, and Sequence Stratigraphy of the Pennsylvanian Morrowan and Atokan Intervals at Farnsworth Unit
by
Rose-Coss, Dylan
,
Cather, Steven
,
Trujillo, Natasha
in
04 OIL SHALES AND TAR SANDS
,
Anadarko
,
Energy & Fuels
2021
Farnsworth Field Unit (FWU), a mature oilfield currently undergoing CO2-enhanced oil recovery (EOR) in the northeastern Texas panhandle, is the study area for an extensive project undertaken by the Southwest Regional Partnership on Carbon Sequestration (SWP). SWP is characterizing the field and monitoring and modeling injection and fluid flow processes with the intent of verifying storage of CO2 in a timeframe of 100–1000 years. Collection of a large set of data including logs, core, and 3D geophysical data has allowed us to build a detailed reservoir model that is well-grounded in observations from the field. This paper presents a geological description of the rocks comprising the reservoir that is a target for both oil production and CO2 storage, as well as the overlying units that make up the primary and secondary seals. Core descriptions and petrographic analyses were used to determine depositional setting, general lithofacies, and a diagenetic sequence for reservoir and caprock at FWU. The reservoir is in the Pennsylvanian-aged Morrow B sandstone, an incised valley fluvial deposit that is encased within marine shales. The Morrow B exhibits several lithofacies with distinct appearance as well as petrophysical characteristics. The lithofacies are typical of incised valley fluvial sequences and vary from a relatively coarse conglomerate base to an upper fine sandstone that grades into the overlying marine-dominated shales and mudstone/limestone cyclical sequences of the Thirteen Finger limestone. Observations ranging from field scale (seismic surveys, well logs) to microscopic (mercury porosimetry, petrographic microscopy, microprobe and isotope data) provide a rich set of data on which we have built our geological and reservoir models.
Journal Article
Global pesticide resistance in arthropods
2008
Pesticide resistance has had a substantial impact on crop production and has been an important driver of change in modern agriculture, animal production and human health. Focusing specifically on arthropods, this book provides a comprehensive review of relevant issues in pesticide resistance. Detailed listings and references to all documented reports of resistance from around the world are included.
The Promotion of Genomic Instability in Human Fibroblasts by Adenovirus 12 Early Region 1B 55K Protein in the Absence of Viral Infection
by
Stewart, Grant S.
,
Abualfaraj, Tareq
,
Hollingworth, Robert
in
Adenoviridae
,
adenovirus 12
,
Adenovirus E1B Proteins - metabolism
2021
The adenovirus 12 early region 1B55K (Ad12E1B55K) protein has long been known to cause non-random damage to chromosomes 1 and 17 in human cells. These sites, referred to as Ad12 modification sites, have marked similarities to classic fragile sites. In the present report we have investigated the effects of Ad12E1B55K on the cellular DNA damage response and on DNA replication, considering our increased understanding of the pathways involved. We have compared human skin fibroblasts expressing Ad12E1B55K (55K+HSF), but no other viral proteins, with the parental cells. Appreciable chromosomal damage was observed in 55K+HSFs compared to parental cells. Similarly, an increased number of micronuclei was observed in 55K+HSFs, both in cycling cells and after DNA damage. We compared DNA replication in the two cell populations; 55K+HSFs showed increased fork stalling and a decrease in fork speed. When replication stress was introduced with hydroxyurea the percentage of stalled forks and replication speeds were broadly similar, but efficiency of fork restart was significantly reduced in 55K+HSFs. After DNA damage, appreciably more foci were formed in 55K+HSFs up to 48 h post treatment. In addition, phosphorylation of ATM substrates was greater in Ad12E1B55K-expressing cells following DNA damage. Following DNA damage, 55K+HSFs showed an inability to arrest in cell cycle, probably due to the association of Ad12E1B55K with p53. To confirm that Ad12E1B55K was targeting components of the double-strand break repair pathways, co-immunoprecipitation experiments were performed which showed an association of the viral protein with ATM, MRE11, NBS1, DNA-PK, BLM, TOPBP1 and p53, as well as with components of the replisome, MCM3, MCM7, ORC1, DNA polymerase δ, TICRR and cdc45, which may account for some of the observed effects on DNA replication. We conclude that Ad12E1B55K impacts the cellular DNA damage response pathways and the replisome at multiple points through protein–protein interactions, causing genomic instability.
Journal Article
RECON syndrome is a genome instability disorder caused by mutations in the DNA helicase RECQL1
by
Woodward, Beth L.
,
Longo, Gabriel M.C.
,
Meiner, Vardiella
in
Adenosine triphosphatase
,
Biochemical analysis
,
Biomedical research
2022
Despite being the first homolog of the bacterial RecQ helicase to be identified in humans, the function of RECQL1 remains poorly characterized. Furthermore, unlike other members of the human RECQ family of helicases, mutations in RECQL1 have not been associated with a genetic disease. Here, we identify 2 families with a genome instability disorder that we have named RECON (RECql ONe) syndrome, caused by biallelic mutations in the RECQL gene. The affected individuals had short stature, progeroid facial features, a hypoplastic nose, xeroderma, and skin photosensitivity and were homozygous for the same missense mutation in RECQL1 (p.Ala459Ser), located within its zinc binding domain. Biochemical analysis of the mutant RECQL1 protein revealed that the p.A459S missense mutation compromised its ATPase, helicase, and fork restoration activity, while its capacity to promote single-strand DNA annealing was largely unaffected. At the cellular level, this mutation in RECQL1 gave rise to a defect in the ability to repair DNA damage induced by exposure to topoisomerase poisons and a failure of DNA replication to progress efficiently in the presence of abortive topoisomerase lesions. Taken together, RECQL1 is the fourth member of the RecQ family of helicases to be associated with a human genome instability disorder.
Journal Article
Activation of DNA Damage Response Pathways during Lytic Replication of KSHV
by
Skalka, George
,
Blackbourn, David
,
Stewart, Grant
in
Ataxia Telangiectasia Mutated Proteins - metabolism
,
Calcium-Binding Proteins - metabolism
,
Cell Cycle
2015
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of several human malignancies. Human tumour viruses such as KSHV are known to interact with the DNA damage response (DDR), the molecular pathways that recognise and repair lesions in cellular DNA. Here it is demonstrated that lytic reactivation of KSHV leads to activation of the ATM and DNA-PK DDR kinases resulting in phosphorylation of multiple downstream substrates. Inhibition of ATM results in the reduction of overall levels of viral replication while inhibition of DNA-PK increases activation of ATM and leads to earlier viral release. There is no activation of the ATR-CHK1 pathway following lytic replication and CHK1 phosphorylation is inhibited at later times during the lytic cycle. Despite evidence of double-strand breaks and phosphorylation of H2AX, 53BP1 foci are not consistently observed in cells containing lytic virus although RPA32 and MRE11 localise to sites of viral DNA synthesis. Activation of the DDR following KSHV lytic reactivation does not result in a G1 cell cycle block and cells are able to proceed to S-phase during the lytic cycle. KSHV appears then to selectively activate DDR pathways, modulate cell cycle progression and recruit DDR proteins to sites of viral replication during the lytic cycle.
Journal Article
Correction: Hollingworth, R.; Grand, R.J. Modulation of DNA Damage and Repair Pathways by Human Tumour Viruses. Viruses 2015, 7, 2542-2591
2015
We have noted a number of errors in the references of this manuscript.[...]
Journal Article
Neurochemicals aid bee nestmate recognition
by
Heuser, Laura
,
Unité mixte de recherche Ecologie des invertébrés (UAPV) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU)
,
University of Illinois System
in
Bees
,
Bioassays
,
Correspondence
1999
The theory of kin selection1, which revolutionized the study of social behaviour, requires the discrimination of relatives from non-relatives. Many animals possess this ability, but the underlying neurobiological mechanisms have not been studied. Here we provide evidence for the neurochemical modulation of nestmate recognition: treatment with octopamine agonists improves the discrimination of related nestmates from unrelated non-nestmates in honeybees.
Journal Article
BRAF mutations are associated with increased iron regulatory protein‐2 expression in colorectal tumorigenesis
by
Lal, Neeraj
,
Hollingworth, Robert
,
Sutton, Emily
in
Biomedical materials
,
BRAF
,
Breast cancer
2017
A role for iron in carcinogenesis is supported by evidence that iron metabolism proteins are modulated in cancer progression. To date, however, the expression of iron regulatory protein‐2 (IRP2), which is known to regulate several iron metabolism proteins, has not been assessed in colorectal cancer. Expression of IRP2 was assessed by quantitative RT‐PCR and immunohistochemistry in human colorectal cancer tissue. By interrogating The Cancer Genome Atlas (TCGA) database, expression of IRP2 and transferrin receptor‐1 (TfR1) was assessed relative to common mutations that are known to occur in cancer. The impact of suppressing IRP2 on cellular iron metabolism was also determined by using siRNA and by using the MEK inhibitor trametinib. IRP2 was overexpressed in colorectal cancer compared to normal colonic mucosa and its expression was positively correlated with TfR1 expression. In addition, IRP2 expression was associated with mutations in BRAF. The MEK inhibitor trametinib suppressed IRP2 and this was associated with a suppression in TfR1 and the labile iron pool (LIP). Moreover, epidermal growth factor stimulation resulted in decreased ferritin expression and an increase in the LIP which were independent of IRP2. Results presented here suggest that ablating IRP2 provides a therapeutic platform for intervening in colorectal tumorigenesis. IRP‐2 is overexpressed in colorectal cancer and that its expression is tightly correlated with transferrin receptor‐1 expression. Furthermore, IRP‐2 expression is associated with mutation in BRAF. Using MAPK/ERK inhibitors might be another mechanism by which iron sensitive tumours can be targeted.
Journal Article
Pathogenic variants in SLF2 and SMC5 cause segmented chromosomes and mosaic variegated hyperploidy
2022
Embryonic development is dictated by tight regulation of DNA replication, cell division and differentiation. Mutations in DNA repair and replication genes disrupt this equilibrium, giving rise to neurodevelopmental disease characterized by microcephaly, short stature and chromosomal breakage. Here, we identify biallelic variants in two components of the RAD18-SLF1/2-SMC5/6 genome stability pathway,
SLF2
and
SMC5
, in 11 patients with microcephaly, short stature, cardiac abnormalities and anemia. Patient-derived cells exhibit a unique chromosomal instability phenotype consisting of segmented and dicentric chromosomes with mosaic variegated hyperploidy. To signify the importance of these segmented chromosomes, we have named this disorder Atelís (meaning - incomplete) Syndrome. Analysis of Atelís Syndrome cells reveals elevated levels of replication stress, partly due to a reduced ability to replicate through G-quadruplex DNA structures, and also loss of sister chromatid cohesion. Together, these data strengthen the functional link between SLF2 and the SMC5/6 complex, highlighting a distinct role for this pathway in maintaining genome stability.
The SMC5/6 complex is critical for genome stability. Here, the authors identify mutations in SLF2 and SMC5 as cause of Atelís Syndrome characterized by microcephaly, short stature, anemia, segmented chromosomes and mosaic variegated hyperploidy.
Journal Article