Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
111 result(s) for "Holloway, Alexander"
Sort by:
Semi-automated assessment of the risk of bias due to missing evidence in network meta-analysis: a guidance paper for the ROB-MEN web-application
Network meta-analysis compares multiple interventions and estimates the relative treatment effects between all interventions, combining both direct and indirect evidence. Recently, a framework was developed to assess the Risk Of Bias due to Missing Evidence in Network meta-analysis (ROB-MEN) which is part of the more comprehensive framework to evaluate the Confidence In the evidence for Network Meta-Analysis (CINeMA). To produce an overall risk of bias judgement for each network estimate, ROB-MEN: performs an assessment of the bias due to missing evidence in each possible pairwise comparison; combines the assessment with the contribution from the direct pairwise comparisons; considers the potential for small-study effects. To facilitate and semi-automate this process, ROB-MEN has been implemented in a user-friendly web-application ( https://cinema.ispm.unibe.ch/rob-men ). Here we provide a tutorial detailing the functionality and use of the application consisting of data upload, analysis configuration, output visualisation, and production of the tool’s output tables for recording the risk of bias assessment. We also illustrate an example application using the demo dataset available for download on the application’s homepage. The ROB-MEN web-application is open-source and freely available ( https://github.com/esm-ispm-unibe-ch/rob-men ).
Probabilistic inference of the genetic architecture underlying functional enrichment of complex traits
We develop a Bayesian model (BayesRR-RC) that provides robust SNP-heritability estimation, an alternative to marker discovery, and accurate genomic prediction, taking 22 seconds per iteration to estimate 8.4 million SNP-effects and 78 SNP-heritability parameters in the UK Biobank. We find that only ≤10% of the genetic variation captured for height, body mass index, cardiovascular disease, and type 2 diabetes is attributable to proximal regulatory regions within 10kb upstream of genes, while 12-25% is attributed to coding regions, 32–44% to introns, and 22-28% to distal 10-500kb upstream regions. Up to 24% of all cis and coding regions of each chromosome are associated with each trait, with over 3,100 independent exonic and intronic regions and over 5,400 independent regulatory regions having ≥95% probability of contributing ≥0.001% to the genetic variance of these four traits. Our open-source software (GMRM) provides a scalable alternative to current approaches for biobank data. Improving inference in large-scale genetic data linked to electronic medical record data requires the development of novel computationally efficient regression methods. Here, the authors develop a Bayesian approach for association analyses to improve SNP-heritability estimation, discovery, fine-mapping and genomic prediction.
Genetic correlations reveal the shared genetic architecture of transcription in human peripheral blood
Transcript co-expression is regulated by a combination of shared genetic and environmental factors. Here, we estimate the proportion of co-expression that is due to shared genetic variance. To do so, we estimated the genetic correlations between each pairwise combination of 2469 transcripts that are highly heritable and expressed in whole blood in 1748 unrelated individuals of European ancestry. We identify 556 pairs with a significant genetic correlation of which 77% are located on different chromosomes, and report 934 expression quantitative trait loci, identified in an independent cohort, with significant effects on both transcripts in a genetically correlated pair. We show significant enrichment for transcription factor control and physical proximity through chromatin interactions as possible mechanisms of shared genetic control. Finally, we construct networks of interconnected transcripts and identify their underlying biological functions. Using genetic correlations to investigate transcriptional co-regulation provides valuable insight into the nature of the underlying genetic architecture of gene regulation. Covariance of gene expression pairs is due to a combination of shared genetic and environmental factors. Here the authors estimate the genetic correlation between highly heritable pairs and identify transcription factor control and chromatin interactions as possible mechanisms of correlation.
Constraints on eQTL Fine Mapping in the Presence of Multisite Local Regulation of Gene Expression
Expression quantitative trait locus (eQTL) detection has emerged as an important tool for unraveling of the relationship between genetic risk factors and disease or clinical phenotypes. Most studies use single marker linear regression to discover primary signals, followed by sequential conditional modeling to detect secondary genetic variants affecting gene expression. However, this approach assumes that functional variants are sparsely distributed and that close linkage between them has little impact on estimation of their precise location and the magnitude of effects. We describe a series of simulation studies designed to evaluate the impact of linkage disequilibrium (LD) on the fine mapping of causal variants with typical eQTL effect sizes. In the presence of multisite regulation, even though between 80 and 90% of modeled eSNPs associate with normally distributed traits, up to 10% of all secondary signals could be statistical artifacts, and at least 5% but up to one-quarter of credible intervals of SNPs within r2 > 0.8 of the peak may not even include a causal site. The Bayesian methods eCAVIAR and DAP (Deterministic Approximation of Posteriors) provide only modest improvement in resolution. Given the strong empirical evidence that gene expression is commonly regulated by more than one variant, we conclude that the fine mapping of causal variants needs to be adjusted for multisite influences, as conditional estimates can be highly biased by interference among linked sites, but ultimately experimental verification of individual effects is needed. Presumably similar conclusions apply not just to eQTL mapping, but to multisite influences on fine mapping of most types of quantitative trait.
Trans-eQTLs identified in whole blood have limited influence on complex disease biology
Trans-eQTLs have been implicated in complex traits and common diseases, but many were initially identified on the basis of having an effect in cis, and there has been no assessment of the significance of the overlap in relation to chance expectations. Here, we investigated whether trans-expression quantitative trait loci (eQTL) associations identified in whole blood contribute to variance in complex traits by determining (1) whether genome-wide significant (GWS) single-nucleotide polymorphisms (SNPs) were enriched for trans-eQTL (including trans-only eQTL), and (2) whether the genomic regions surrounding associated trans-genes were enriched for statistical associations in the relevant GWAS. On average for a given phenotype, we identify 4.8% of GWS SNPs overlapping with trans-eQTL present in blood, and show that for the majority of these phenotypes, this observation does not exceed that expected by chance. Likewise, we observe no enrichment for genetic associations with the GWAS phenotype in the regions surrounding the linked trans-genes, with the exception of rheumatoid arthritis. Interestingly, the GWS SNPs for each phenotype were consistently more enriched for unique trans-eQTL SNPs than trans-eQTL SNP-probe pairs (p = 4 × 10−7), with schizophrenia the only exception. This relative enrichment for trans-eQTL SNPs over trans-eQTL SNP-probe pairs implies that trait-associated trans-eQTL SNPs in whole blood are less likely to be 'master regulators' than random trans-eQTL SNPs. Taken together, these results suggest little evidence for the role of blood-based trans-eQTL in complex traits and disease, although this may reflect the finite size of currently available data sets and our findings may not hold for trans-eQTLs in more trait-relevant tissues. All software is publically available at https://github.com/IMB-Computational-Genomics-Lab/eqtlOverlapper.
Autosomal genetic control of human gene expression does not differ across the sexes
Background Despite their nearly identical genomes, males and females differ in risk, incidence, prevalence, severity and age-at-onset of many diseases. Sexual dimorphism is also seen in human autosomal gene expression, and has largely been explored by examining the contribution of genotype-by-sex interactions to variation in gene expression. Results In this study, we use data from a mixture of pedigree and unrelated individuals with verified European ancestry to investigate the sex-specific genetic architecture of gene expression measured in whole blood across n =1048 males and n =1005 females by treating gene expression intensities in the sexes as two distinct traits and estimating the genetic correlation ( r G ) between them. These correlations measure the similarity of the combined additive genetic effects of all single-nucleotide polymorphisms across the autosomal chromosomes, and thus the level of common genetic control of gene expression across the sexes. Genetic correlations are estimated across the sexes for the expression levels of 12,528 autosomal gene expression probes using bivariate GREML, and tested for differences in autosomal genetic control of gene expression across the sexes. Overall, no deviation of the distribution of test statistics is observed from that expected under the null hypothesis of a common autosomal genetic architecture for gene expression across the sexes. Conclusions These results suggest that males and females share the same common genetic control of gene expression.
Constraints on eQTL fine mapping in the presence of multi-site local regulation of gene expression
Expression QTL (eQTL) detection has emerged as an important tool for unravelling of the relationship between genetic risk factors and disease or clinical phenotypes. Most studies use single marker linear regression to discover primary signals, followed by sequential conditional modeling to detect secondary genetic variants affecting gene expression. However, this approach assumes that functional variants are sparsely distributed and that close linkage between them has little impact on estimation of their precise location and magnitude of effects. In this study, we address the prevalence of secondary signals and bias in estimation of their effects by performing multi-site linear regression on two large human cohort peripheral blood gene expression datasets (each greater than 2,500 samples) with accompanying whole genome genotypes, namely the CAGE compendium of Illumina microarray studies, and the Framingham Heart Study Affymetrix data. Stepwise conditional modeling demonstrates that multiple eQTL signals are present for ~40% of over 3500 eGenes in both datasets, and the number of loci with additional signals reduces by approximately two-thirds with each conditioning step. However, the concordance of specific signals between the two studies is only ~30%, indicating that expression profiling platform is a large source of variance in effect estimation. Furthermore, a series of simulation studies imply that in the presence of multi-site regulation, up to 10% of the secondary signals could be artefacts of incomplete tagging, and at least 5% but up to one quarter of credible intervals may not even include the causal site, which is thus mis-localized. Joint multi-site effect estimation recalibrates effect size estimates by just a small amount on average. Presumably similar conclusions apply to most types of quantitative trait. Given the strong empirical evidence that gene expression is commonly regulated by more than one variant, we conclude that the fine-mapping of causal variants needs to be adjusted for multi-site influences, as conditional estimates can be highly biased by interference among linked sites.
Transcriptional bursting in Drosophila development: Stochastic dynamics of eve stripe 2 expression
Anterior-posterior (AP) body segmentation of the fruit fly (Drosophila) is first seen in the 7-stripe spatial expression patterns of the pair-rule genes, which regulate downstream genes determining specific segment identities. Regulation of pair-rule expression has been extensively studied for the even-skipped (eve) gene. Recent live imaging, of a reporter for the 2nd eve stripe, has demonstrated the stochastic nature of this process, with 'bursts' in the number of RNA transcripts being made over time. We developed a stochastic model of the spatial and temporal expression of eve stripe 2 (binding by transcriptional activators (Bicoid and Hunchback proteins) and repressors (Giant and Krüppel proteins), transcriptional initiation and termination; with all rate parameters constrained by features of the experimental data) in order to analyze the noisy experimental time series and test hypotheses for how eve transcription is regulated. These include whether eve transcription is simply OFF or ON, with a single ON rate, or whether it proceeds by a more complex mechanism, with multiple ON rates. We find that both mechanisms can produce long (multi-minute) RNA bursts, but that the short-time (minute-to-minute) statistics of the data is indicative of eve being transcribed with at least two distinct ON rates, consistent with data on the joint activation of eve by Bicoid and Hunchback. We also predict distinct statistical signatures for cases in which eve is repressed (e.g. along the edges of the stripe) vs. cases in which activation is reduced (e.g. by mutagenesis of transcription factor binding sites). Fundamental developmental processes such as gene transcription are intrinsically noisy; our approach presents a new way to quantify and analyze time series data during developmental patterning in order to understand regulatory mechanisms and how they propagate noise and impact embryonic robustness.