Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
993 result(s) for "Holmes, Michael J."
Sort by:
Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes
Eusociality has convergently evolved multiple times, but the genomic basis of caste-based division of labor and degree to which independent origins of eusociality have utilized common genes remain largely unknown. Here we characterize caste-specific transcriptomic profiles across development and adult body segments from pharaoh ants ( Monomorium pharaonis ) and honey bees ( Apis mellifera ), representing two independent origins of eusociality. We identify a substantial shared core of genes upregulated in the abdomens of queen ants and honey bees that also tends to be upregulated in mated female flies, suggesting that these genes are part of a conserved insect reproductive groundplan. Outside of this shared groundplan, few genes are differentially expressed in common. Instead, the majority of the thousands of caste-associated genes are plastically expressed, rapidly evolving, and relatively evolutionarily young. These results emphasize that the recruitment of both highly conserved and lineage-specific genes underlie the convergent evolution of novel traits such as eusociality. Eusocial caste systems have evolved independently multiple times. Here, Warner et al. investigate the amount of shared vs. lineage-specific genes involved in the evolution of caste in pharaoh ants and honey bees by comparing transcriptomes across tissues, developmental stages, and castes.
Model of the Origin of a Ciguatoxic Grouper (Plectropomus leopardus)
Published data were used to model the transfer of ciguatoxins (CTX) across three trophic levels of a marine food chain on the Great Barrier Reef (GBR), Australia, to produce a mildly toxic common coral trout (Plectropomus leopardus), one of the most targeted food fishes on the GBR. Our model generated a 1.6 kg grouper with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1 = CTX1B) from 1.1 to 4.3 µg of P-CTX-1 equivalents (eq.) entering the food chain from 0.7 to 2.7 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 pg/cell of the P-CTX-1 precursor, P-CTX-4B (CTX4B). We simulated the food chain transfer of ciguatoxins via surgeonfishes by modelling Ctenochaetus striatus feeding on turf algae. A C. striatus feeding on ≥1000 Gambierdiscus/cm2 of turf algae accumulates sufficient toxin in <2 days that when preyed on, produces a 1.6 kg common coral trout with a flesh concentration of 0.1 µg/kg P-CTX-1. Our model shows that even transient blooms of highly ciguatoxic Gambierdiscus can generate ciguateric fishes. In contrast, sparse cell densities of ≤10 Gambierdiscus/cm2 are unlikely to pose a significant risk, at least in areas where the P-CTX-1 family of ciguatoxins predominate. The ciguatera risk from intermediate Gambierdiscus densities (~100 cells/cm2) is more difficult to assess, as it requires feeding times for surgeonfish (~4–14 days) that overlap with turnover rates of turf algae that are grazed by herbivorous fishes, at least in regions such as the GBR, where stocks of herbivorous fishes are not impacted by fishing. We use our model to explore how the duration of ciguatoxic Gambierdiscus blooms, the type of ciguatoxins they produce, and fish feeding behaviours can produce differences in relative toxicities between trophic levels. Our simple model indicates thresholds for the design of risk and mitigation strategies for ciguatera and the variables that can be manipulated to explore alternate scenarios for the accumulation and transfer of P-CTX-1 analogues through marine food chains and, potentially, for other ciguatoxins in other regions, as more data become available.
Reviewing Evidence for Disturbance to Coral Reefs Increasing the Risk of Ciguatera
The hypothesis that disturbance to coral reefs creates new surfaces that increase the risk of ciguatera is premised upon the increased algal substrates that develop on these surfaces being colonised by high ciguatoxin (CTX)-producing Gambierdiscus species that proliferate and enter the ciguatera food chain. Current evidence indicates that new algal substrates are indeed rapidly colonised by Gambierdiscus. However, the requirement that these Gambierdiscus species include at least one that is a significant (high) CTX-producer is more likely a limiting step. While ambient environmental conditions impact the capacity of Gambierdiscus to bloom, factors that limit the growth of the bloom could influence (typically increase) the flux of CTX entering marine food chains. Additionally, new algal substrates on damaged reefs can be preferentially grazed to funnel ciguatoxins from Gambierdiscus to herbivores in disturbed reef areas. In societies consuming second trophic level species (herbivores, grazers, and detritivores), such funnelling of CTX would increase the risk of ciguatera, although such risk would be partially offset over time by growth (toxin-dilution) and depuration. Here, we review evidence for six potential mechanisms to increase ciguatera risk from disturbance to coral reefs and suggest a hypothesis where ecosystem changes could increase the flux of CTX to groupers through a shift in predation from predominately feeding on planktonic-feeding prey to mostly feeding on benthic-feeding prey, increasing the potential for CTX to accumulate. Evidence for this hypothesis is stronger for the Pacific and Indian Oceans, and it may not apply to the Caribbean Sea/Atlantic Ocean.
A General Food Chain Model for Bioaccumulation of Ciguatoxin into Herbivorous Fish in the Pacific Ocean Suggests Few Gambierdiscus Species Can Produce Poisonous Herbivores, and Even Fewer Can Produce Poisonous Higher Trophic Level Fish
We adapt previous conceptual and numerical models of ciguateric food chains for the bioaccumulation of Pacific-ciguatoxin-1 (P-CTX-1) to a general model for bioaccumulation of P-CTX3C by parrotfish (Scarus frenatus, S. niger, and S. psittacus) that feed by scraping turf algae, and surgeonfish (Naso unicornis) that mostly feed on macroalgae. We also include the Indian Ocean parrotfish Chlorurus sordidus as a model for an excavator feeding parrotfish and include comparisons with the detritivorous surgeonfish Ctenochaetus striatus that brush-feeds on turf algae. Our food chain model suggests that, of the Gambierdiscus and Fukuyoa species so far analysed for ciguatoxin (CTX) production from the Pacific, only G. polynesiensis produces sufficient P-CTX3C to consistently produce parrotfish or N. unicornis with poisonous flesh. Our model suggests that insufficient CTX would accumulate into the flesh of parrotfish or N. unicornis to become poisonous from ingesting benthic dinoflagellates producing ≤0.03 pg P-CTX3C eq./cell, except from extended feeding times on high-density blooms and in the absence of significant depuration of CTX. Apart from G. polynesiensis, only G. belizeanus and possibly G. silvae and G. australes are thought to produce >0.03 pg P-CTX3C eq./cell in the Pacific. However, with relatively low maximum concentrations of ≤0.1 pg P-CTX3C eq./cell it is likely that their contribution is minimal. Our model also suggests that the differences between the area of turf algae grazed by parrotfish and similar sized C. striatus results in greater accumulation of CTX by this surgeonfish. This makes C. striatus a higher ciguatera risk than similar sized parrotfish, either directly for human consumption or as prey for higher trophic level fishes, consistent with poisoning data from Polynesia. It also suggests the possibility that C. striatus could bioaccumulate sufficient CTX to become mildly poisonous from feeding on lower toxicity Gambierdiscus or Fukuyoa species known to produce ≥0.02 P-CTX3C eq./cell. This indicates the potential for at least two food chain pathways to produce ciguateric herbivorous fishes, depending on the CTX concentrations produced by resident Gambierdiscus or Fukuyoa on a reef and the grazing capacity of herbivorous fish. However, only G. polynesiensis appears to produce sufficient P-CTX3C to consistently accumulate in food chains to produce higher trophic level fishes that cause ciguatera in the Pacific. We incorporate CTX depuration into our model to explore scenarios where mildly poisonous parrotfish or N. unicornis ingest CTX at a rate that is balanced by depuration to estimate the Gambierdiscus/Fukuyoa densities and CTX concentrations required for these fish to remain poisonous on a reef.
Modelling the Bioaccumulation of Ciguatoxins in Parrotfish on the Great Barrier Reef Reveals Why Biomagnification Is Not a Property of Ciguatoxin Food Chains
We adapt previously developed conceptual and numerical models of ciguateric food chains on the Great Barrier Reef, Australia, to model the bioaccumulation of ciguatoxins (CTXs) in parrotfish, the simplest food chain with only two trophic levels. Our model indicates that relatively low (1 cell/cm2) densities of Gambierdiscus/Fukuyoa species (hereafter collectively referred to as Gambierdiscus) producing known concentrations of CTX are unlikely to be a risk of producing ciguateric fishes on the Great Barrier Reef unless CTX can accumulate and be retained in parrotfish over many months. Cell densities on turf algae equivalent to 10 Gambierdiscus/cm2 producing known maximum concentrations of Pacific-CTX-4 (0.6 pg P-CTX-4/cell) are more difficult to assess but could be a risk. This cell density may be a higher risk for parrotfish than we previously suggested for production of ciguateric groupers (third-trophic-level predators) since second-trophic-level fishes can accumulate CTX loads without the subsequent losses that occur between trophic levels. Our analysis suggests that the ratios of parrotfish length-to-area grazed and weight-to-area grazed scale differently (allometrically), where the area grazed is a proxy for the number of Gambierdiscus consumed and hence proportional to toxin accumulation. Such scaling can help explain fish size–toxicity relationships within and between trophic levels for ciguateric fishes. Our modelling reveals that CTX bioaccumulates but does not necessarily biomagnify in food chains, with the relative enrichment and depletion rates of CTX varying with fish size and/or trophic level through an interplay of local and regional food chain influences. Our numerical model for the bioaccumulation and transfer of CTX across food chains helps conceptualize the development of ciguateric fishes by comparing scenarios that reveal limiting steps in producing ciguateric fish and focuses attention on the relative contributions from each part of the food chain rather than only on single components, such as CTX production.
Critical Review and Conceptual and Quantitative Models for the Transfer and Depuration of Ciguatoxins in Fishes
We review and develop conceptual models for the bio-transfer of ciguatoxins in food chains for Platypus Bay and the Great Barrier Reef on the east coast of Australia. Platypus Bay is unique in repeatedly producing ciguateric fishes in Australia, with ciguatoxins produced by benthic dinoflagellates (Gambierdiscus spp.) growing epiphytically on free-living, benthic macroalgae. The Gambierdiscus are consumed by invertebrates living within the macroalgae, which are preyed upon by small carnivorous fishes, which are then preyed upon by Spanish mackerel (Scomberomorus commerson). We hypothesise that Gambierdiscus and/or Fukuyoa species growing on turf algae are the main source of ciguatoxins entering marine food chains to cause ciguatera on the Great Barrier Reef. The abundance of surgeonfish that feed on turf algae may act as a feedback mechanism controlling the flow of ciguatoxins through this marine food chain. If this hypothesis is broadly applicable, then a reduction in herbivory from overharvesting of herbivores could lead to increases in ciguatera by concentrating ciguatoxins through the remaining, smaller population of herbivores. Modelling the dilution of ciguatoxins by somatic growth in Spanish mackerel and coral trout (Plectropomus leopardus) revealed that growth could not significantly reduce the toxicity of fish flesh, except in young fast-growing fishes or legal-sized fishes contaminated with low levels of ciguatoxins. If Spanish mackerel along the east coast of Australia can depurate ciguatoxins, it is most likely with a half-life of ≤1-year. Our review and conceptual models can aid management and research of ciguatera in Australia, and globally.
m6A RNA methylation facilitates pre-mRNA 3’-end formation and is essential for viability of Toxoplasma gondii
Toxoplasma gondii is an obligate intracellular parasite that can cause serious opportunistic disease in the immunocompromised or through congenital infection. To progress through its life cycle, Toxoplasma relies on multiple layers of gene regulation that includes an array of transcription and epigenetic factors. Over the last decade, the modification of mRNA has emerged as another important layer of gene regulation called epitranscriptomics. Here, we report that epitranscriptomics machinery exists in Toxoplasma , namely the methylation of adenosines (m6A) in mRNA transcripts. We identified novel components of the m6A methyltransferase complex and determined the distribution of m6A marks within the parasite transcriptome. m6A mapping revealed the modification to be preferentially located near the 3’-boundary of mRNAs. Knockdown of the m6A writer components METTL3 and WTAP resulted in diminished m6A marks and a complete arrest of parasite replication. Furthermore, we examined the two proteins in Toxoplasma that possess YTH domains, which bind m6A marks, and showed them to be integral members of the cleavage and polyadenylation machinery that catalyzes the 3’-end processing of pre-mRNAs. Loss of METTL3, WTAP, or YTH1 led to a defect in transcript 3’-end formation. Together, these findings establish that the m6A epitranscriptome is essential for parasite viability by contributing to the processing of mRNA 3’-ends.
Origin of Ciguateric Fish: Quantitative Modelling of the Flow of Ciguatoxin through a Marine Food Chain
To begin to understand the impact of food chain dynamics on ciguatera risk, we used published data to model the transfer of ciguatoxins across four trophic levels of a marine food chain in Platypus Bay, Australia. The data to support this first attempt to conceptualize the scale of each trophic transfer step was limited, resulting in broad estimates. The hypothetical scenario we explored generated a low-toxicity 10 kg Spanish mackerel (Scomberomorus commerson) with a flesh concentration of 0.1 µg/kg of Pacific-ciguatoxin-1 (P-CTX-1, also known as CTX1B) from 19.5–78.1 µg of P-CTX-1 equivalents (eq.) that enter the marine food chain from a population of 12–49 million benthic dinoflagellates (Gambierdiscus sp.) producing 1.6 × 10−12 g/cell of the P-CTX-1 precursor, P-CTX-4B. This number of Gambierdiscus could be epiphytic on 22–88 kg of the benthic macroalgae (Cladophora) that carpets the bottom of much of Platypus Bay, with the toxin transferred to an estimated 40,000–160,000 alpheid shrimps in the second trophic level. This large number of shrimps appears unrealistic, but toxic shrimps would likely be consumed by a school of small, blotched javelin fish (Pomadasys maculatus) at the third trophic level, reducing the number of shrimps consumed by each fish. The Spanish mackerel would accumulate a flesh concentration of 0.1 µg/kg P-CTX-1 eq. by preying upon the school of blotched javelin and consuming 3.6–14.4 µg of P-CTX-1 eq. However, published data indicate this burden of toxin could be accumulated by a 10 kg Spanish mackerel from as few as one to three blotched javelin fish, suggesting that much greater amounts of toxin than modelled here must at certain times be produced and transferred through Platypus Bay food chains. This modelling highlights the need for better quantitative estimates of ciguatoxin production, biotransformation, and depuration through marine food chains to improve our understanding and management of ciguatera risk.
Bimodal Cell Size and Fusing Cells Observed in a Clonal Culture of the Ciguatoxin-Producing Benthic Dinoflagellate Gambierdiscus (WC1/1)
Cells in a clonal culture of the WC1/1 strain of Gambierdiscus that produced ciguatoxin and maitotoxin-3 were observed to spontaneously fuse during the light phase of culture growth. Cells in the process of fusion were indistinguishable from other cells under the light microscope, except that at least one (often both) of the fusing cells displayed an extendible, finger-like protrusion (presumed peduncle) arising from near the sulcul region. Fusion started with one of the cells turning 90° to place the planes of the girdles approximately at right angles to each other, and movement of the transverse flagella ceased in both cells, or in the cell seen in girdle (lateral) view. The cell in girdle view appeared to fuse into the theca of the other cell. The cell that had turned 90° often rounded up and become egg shaped (obovoid) during early fusion. Fusion can be quick (<10 min) or can take more than an hour. We saw no evidence of the theca being shed during fusion. Measurement of the dorsoventral and transdiameters revealed a wide range for cell sizes that were distributed as a bimodal population in the clonal culture. This bimodal cell population structure was maintained in clonal cultures reisolated from a small or large cell from the original WC1/1 culture. Cellular production of ciguatoxins by the WC1/1 clone increased during the first two years in culture with a corresponding decrease in production of maitotoxin-3, but this inverse relationship was not maintained over the following ~1.5 years.
Translation initiation factor eIF1.2 promotes Toxoplasma stage conversion by regulating levels of key differentiation factors
The parasite Toxoplasma gondii persists in its hosts by converting from replicating tachyzoites to latent bradyzoites housed in tissue cysts. The molecular mechanisms that mediate T. gondii differentiation remain poorly understood. Through a mutagenesis screen, we identified translation initiation factor eIF1.2 as a critical factor for T. gondii differentiation. A F97L mutation in eIF1.2 or the genetic ablation of eIF1.2 (∆ eif1.2 ) markedly impeded bradyzoite cyst formation in vitro and in vivo. We demonstrated, at single-molecule level, that the eIF1.2 F97L mutation impacts the scanning process of the ribosome preinitiation complex on a model mRNA. RNA sequencing and ribosome profiling experiments unveiled that ∆ eif1.2 parasites are defective in upregulating bradyzoite induction factors BFD1 and BFD2 during stress-induced differentiation. Forced expression of BFD1 or BFD2 significantly restored differentiation in ∆ eif1.2 parasites. Together, our findings suggest that eIF1.2 functions by regulating the translation of key differentiation factors necessary to establish chronic toxoplasmosis. Wang et al. show that Toxoplasma gondii translation initiation factor eIF1.2 is critical for acute to chronic stage transition during infection, underscoring the importance of protein translation in controlling stage differentiation.