Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Homke, Andre"
Sort by:
Femtosecond and nanometre visualization of structural dynamics in superheated nanoparticles
Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution is imaged with a single X-ray pulse. Ultrafast surface softening on the nanometre scale is resolved within 100 fs at the vacuum/sample interface. The ability to observe ultrafast structural changes in nanoscopic samples is essential for understanding non-equilibrium phenomena such as chemical reactions 1 , matter under extreme conditions 2 , ultrafast phase transitions 3 and intense light–matter interactions 4 . Established imaging techniques are limited either in time or spatial resolution and typically require samples to be deposited on a substrate, which interferes with the dynamics. Here, we show that coherent X-ray diffraction images from isolated single samples can be used to visualize femtosecond electron density dynamics. We recorded X-ray snapshot images from a nanoplasma expansion, a prototypical non-equilibrium phenomenon 4 , 5 . Single Xe clusters are superheated using an intense optical laser pulse and the structural evolution of the sample is imaged with a single X-ray pulse. We resolved ultrafast surface softening on the nanometre scale at the plasma/vacuum interface within 100 fs of the heating pulse. Our study is the first time-resolved visualization of irreversible femtosecond processes in free, individual nanometre-sized samples.
Ultra-efficient ionization of heavy atoms by intense X-ray free-electron laser pulses
X-ray free-electron lasers provide unique opportunities for exploring ultrafast dynamics and for imaging the structures of complex systems. Understanding the response of individual atoms to intense X-rays is essential for most free-electron laser applications. First experiments have shown that, for light atoms, the dominant interaction mechanism is ionization by sequential electron ejection, where the highest charge state produced is defined by the last ionic state that can be ionized with one photon. Here, we report an unprecedentedly high degree of ionization of xenon atoms by 1.5 keV free-electron laser pulses to charge states with ionization energies far exceeding the photon energy. Comparing ion charge-state distributions and fluorescence spectra with state-of-the-art calculations, we find that these surprisingly high charge states are created via excitation of transient resonances in highly charged ions, and predict resonance enhanced absorption to be a general phenomenon in the interaction of intense X-rays with systems containing high- Z constituents. Researchers create high ionization states, up to Xe 36+ , using 1.5 keV free-electron laser pulses. The higher than expected ionization may be due to transient resonance-enhanced absorption and the effect may play an important role in interactions of intense X-rays with high- Z elements and radiation damage.
X-ray diffraction from isolated and strongly aligned gas-phase molecules with a free-electron laser
We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e. g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.