Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Hondorp, Darryl W."
Sort by:
Characterization of acoustic detection efficiency using an unmanned surface vessel as a mobile receiver platform
Studies involving acoustic telemetry typically use stationary acoustic receivers arranged in an array or grid. Unmanned surface vehicle (USV)-based mobile receivers offer advantages over the latter approach: the USV can be programmed to autonomously carry a receiver to and from target locations, more readily adapting to a survey’s spatial scope and scale. This work examines the acoustic detection performance of a low-cost USV developed as a flexible sensing platform. The USV was fitted with an acoustic receiver and operated over multiple waypoints set at increasing distances from the transmitter in two modes: drifting and station-keeping. While drifting, the USV was allowed to drift from the waypoint; while station-keeping, the USV used its thruster to hold position. Detection performance of the USV was similar to that of stationary receivers while drifting, but significantly worse while station-keeping. Noise from the USV thruster was hypothesized as a potential cause of poor detection performance during station-keeping. Detection performance varied with the depth of the tethered receiver such that detection range was greater during the deepest (4.6 m) trials than during shallower (1.1 and 2.9 m) trials. These results provide insight and guidance on how a USV can be best used for acoustic telemetry, namely, navigating to a planned waypoint, drifting and lowering the receiver to a desired depth for listening, and then navigating to the next waypoint.
Sequence analysis and acoustic tracking of individual lake sturgeon identify multiple patterns of river–lake habitat use
Understanding the spatial ecology of sturgeon (Acipenseridae) has proven to be a challenge due to the life history characteristics of these fish, especially their long life span, intermittent spawning, and long‐distance migrations. Within the Huron‐Erie Corridor (HEC) of the Laurentian Great Lakes, habitat use of 247 lake sturgeon (Acipenser fulvescens) was monitored over a three‐year period (2015–2017) with acoustic transmitters. Extensive spatial coverage of receivers throughout the St. Clair River, Lake St. Clair, and Detroit River between Lake Huron and Lake Erie (~150 km) allowed for continuous monitoring of the movements of acoustic‐tagged individuals. Sequence analysis of individual detection histories was used to describe lake sturgeon habitat use and to determine (1) whether distinct habitat‐use patterns occurred within the HEC; (2) whether the range of habitats occupied varied across seasons among sturgeon grouped by common patterns; and (3) whether variation identified was related to tagging sites in the two rivers or sex. Lake sturgeon were active throughout the HEC, but five distinct habitat‐use patterns were identified. River residents were not broadly distributed across entire rivers, but rather associated with particular segments (middle Detroit River, St. Clair River delta). Variations in habitat‐use sequences were in part related to three river tagging sites, but not sex, and did not produce groups with sequences that reflected all five habitat‐use patterns derived from cluster analysis. Lake sturgeon distribution was reduced to fewer habitat segments during winter and expanded to the maximum extent during the spring and summer. Conservation planning that incorporates behavioral diversity of habitat use is relatively rare due to a lack of observations on movements of individuals at biologically relevant spatial and temporal scales, but using telemetry and sequence analysis methods may promote the success of conservation and restoration efforts.
Lake sturgeon behavioral diversity in the Laurentian great lakes: migratory patterns across populations and habitats
Background Characterizing the diversity of migration behaviors from the individual to the population level is essential for understanding how organisms respond to environmental variation and how these responses affect survival and habitat use. Lake sturgeon ( Acipenser fulvescens ) is a species of special concern in the Laurentian Great Lakes that are long-lived and generally classified as intermittent, adfluvial spawners. Observations of lake sturgeon movements at ecologically relevant spatiotemporal scales have shown that migration behavior often varies among individuals within the same population. However, studies on individual populations, particularly when focused only on a part of the life cycle (e.g., often spawning), provide just a partial understanding of the species’ full migratory scope and processes underlying expression of different migratory behaviors. To better understand lake sturgeon migratory diversity, we characterized and compared migratory behaviors of six lake sturgeon populations occupying environments that varied in habitat availability and connectivity in different Laurentian Great Lakes. Methods Sequence analysis combined with agglomerative hierarchical clustering and visual inspection of daily location data were used to identify distinct lake sturgeon migratory behaviors present in each population. Results Seven distinct migratory behaviors were identified based on differential patterns of lake and river use that encompass spawning and other seasonal periods. Behaviors were categorized as annual spring river, intermittent spring river, intermittent two-step, annual summer river, annual winter river, and annual interlake migrants along with river residents. The presence and frequency of migratory behaviors varied substantially among populations. Conclusions Our study demonstrated that migratory diversity is a general feature of lake sturgeon life history that may be partially shaped by habitat availability and connectivity. Given these results, we propose a conceptual model that links habitat availability and connectivity to migratory diversity and predict a positive association between them. This updated framework provides a cohesive basis for understanding lake sturgeon migratory behavior across variable ecological contexts in the Laurentian Great Lakes and will help promote future research to refute or refine the model.
Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?
Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens) into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove important for predicting sturgeon-vessel interactions in navigable rivers as well as for understanding how fish interact with their habitat in landscapes altered by human activity.
Characterization of acoustic detection efficiency using a gliding robotic fish as a mobile receiver platform
Background Autonomous underwater vehicles (AUVs) and animal telemetry have become important tools for understanding the relationships between aquatic organisms and their environment, but more information is needed to guide the development and use of AUVs as effective animal tracking platforms. A forward-facing acoustic telemetry receiver (VR2Tx 69 kHz; VEMCO, Bedford, Nova Scotia) attached to a novel AUV (gliding robotic fish) was tested in a freshwater lake to (1) compare its detection efficiency (i.e., the probability of detecting an acoustic signal emitted by a tag) of acoustic tags (VEMCO model V8-4H 69 kHz) to stationary receivers and (2) determine if detection efficiency was related to distance between tag and receiver, direction of movement (toward or away from transmitter), depth, or pitch. Results Detection efficiency for mobile (robot-mounted) and stationary receivers were similar at ranges less than 300 m, on average across all tests, but detection efficiency for the mobile receiver decreased faster than for stationary receivers at distances greater than 300 m. Detection efficiency was higher when the robot was moving toward the transmitter than when moving away from the transmitter. Detection efficiency decreased with depth (surface to 4 m) when the robot was moving away from the transmitter, but depth had no significant effect on detection efficiency when the robot was moving toward the transmitter. Detection efficiency was higher when the robot was descending (pitched downward) than ascending (pitched upward) when moving toward the transmitter, but pitch had no significant effect when moving away from the transmitter. Conclusion Results suggested that much of the observed variation in detection efficiency is related to shielding of the acoustic signal by the robot body depending on the positions and orientation of the hydrophone relative to the transmitter. Results are expected to inform hardware, software, and operational changes to gliding robotic fish that will improve detection efficiency. Regardless, data on the size and shape of detection efficiency curves for gliding robotic fish will be useful for planning future missions and should be relevant to other AUVs for telemetry. With refinements, gliding robotic fish could be a useful platform for active tracking of acoustic tags in certain environments.
Detecting commonality in multidimensional fish movement histories using sequence analysis
Background Acoustic telemetry, for tracking fish movement histories, is multidimensional capturing both spatial and temporal domains. Oftentimes, analyses of such data are limited to a single domain, one domain nested within the other, or ad hoc approaches that simultaneously consider both domains. Sequence analysis, on the other hand, offers a repeatable statistical framework that uses a sequence alignment algorithm to calculate pairwise dissimilarities among individual movement histories and then hierarchical agglomerative clustering to identify groups of fish with similar movement histories. The objective of this paper is to explore how acoustic telemetry data can be fit to this statistical framework and used to identify commonalities in the movement histories of acoustic-tagged sea lamprey during upstream migration through the St. Clair-Detroit River System. Results Five significant clusters were identified among individual fish. Clusters represented differences in timing of movements (short vs long duration in the Detroit R. and Lake St. Clair); extent of upstream migration (ceased migration in Lake St. Clair, lower St. Clair R., or upper St. Clair R.), and occurrence of fallback (return to Lake St. Clair after ceasing migration in the St. Clair R.). Inferences about sea lamprey distribution and behavior from these results were similar to those reached in a previous analysis using ad-hoc analysis methods. Conclusions The repeatable statistical framework outlined here can be used to group sea lamprey movement histories based on shared sequence characteristics (i.e., chronological order of “states” occupied). Further, this framework is flexible and allows researchers to define a priori the movement aspect (e.g., order, timing, duration) that is important for identifying both common or previously undetected movement histories. As such, we do not view sequence analysis as a panacea but as a useful complement to other modelling approaches (i.e., exploratory tool for informing hypothesis development) or a stand-alone semi-quantitative method for generating a simplified, temporally and spatially structured view of complex acoustic telemetry data and hypothesis testing when observed patterns warrant further investigation.
Spatiotemporal segregation by migratory phenotype indicates potential for assortative mating in lake sturgeon
Migratory diversity can promote population differentiation if sympatric phenotypes become temporally, spatially, or behaviorally segregated during breeding. In this study, the potential for spatiotemporal segregation was tested among three migratory phenotypes of lake sturgeon (Acipenser fulvescens) that spawn in the St. Clair River of North America’s Laurentian Great Lakes but differ in how often they migrate into the river and in which direction they move after spawning. Acoustic telemetry over 9 years monitored use of two major spawning sites by lake sturgeon that moved north to overwinter in Lake Huron or south to overwinter in Lake St. Clair. Lake St. Clair migrants were further distinguished by whether they migrated into the St. Clair River each year (annual migrants) or intermittently (intermittent migrants). Social network analyses indicated lake sturgeon generally co-occurred with individuals of the same migratory phenotype more often than with different migratory phenotypes. A direct test for differences in space use revealed one site was almost exclusively visited by Lake St. Clair migrants whereas the other site was visited by Lake Huron migrants, intermittent Lake St. Clair migrants, and, to a lesser extent, annual Lake St. Clair migrants. Analysis of arrival and departure dates indicated opportunity for co-occurrence at the site visited by all phenotypes but showed Lake Huron migrants arrived approximately 2 weeks before Lake St. Clair migrants. Taken together, our results indicated partial spatiotemporal segregation of migratory phenotypes that may generate assortative mating and promote population differentiation.
Divergent migration within lake sturgeon (Acipenser fulvescens) populations: Multiple distinct patterns exist across an unrestricted migration corridor
1. Population structure, distribution, abundance and dispersal arguably underpin the entire field of animal ecology, with consequences for regional species persistence, and provision of ecosystem services. Divergent migration behaviours among individuals or among populations are an important aspect of the ecology of highly mobile animals, allowing populations to exploit spatially or temporally distributed food and space resources. 2. This study investigated the spatial ecology of lake sturgeon (Acipenser fulvescens) within the barrier free Huron-Erie Corridor (HEC), which connects Lake Huron and Lake Erie of the North American Laurentian Great Lakes. 3. Over 6 years (2011-2016), movements of 268 lake sturgeon in the HEC were continuously monitored across the Great Lakes using acoustic telemetry (10 years battery life acoustic transmitters). Five distinct migration behaviours were identified with hierarchical cluster analysis, based on the phenology and duration of river and lake use. 4. Lake sturgeon in the HEC were found to contain a high level of intraspecific divergent migration, including partial migration with the existence of residents. Specific behaviours included year-round river residency and multiple lake-migrant behaviours that involved movements between lakes and rivers. Over 85% of individuals were assigned to migration behaviours as movements were consistently repeated over the study, which suggested migration behaviours were consistent and persistent in lake sturgeon. Differential use of specific rivers or lakes by acoustic-tagged lake sturgeon further subdivided individuals into 14 \"contingents\" (spatiotemporally segregated subgroups). 5. Contingents associated with one river (Detroit or St. Clair) were rarely detected in the other river, which confirmed that lake sturgeon in the Detroit and St. Clair represent two semi-independent populations that could require separate management consideration for their conservation. The distribution of migration behaviours did not vary between populations, sexes, body size or among release locations, which indicated that intrapopulation variability in migratory behaviour is a general feature of the spatial ecology of lake sturgeon in unfragmented landscapes.
Effects of acoustic tag implantation on lake sturgeon Acipenser fulvescens: lack of evidence for changes in behavior
Background An assumption of studies using acoustic telemetry is that surgical implantation of acoustic transmitters or tags does not alter behavior of tagged individuals. Evaluating the validity of this assumption can be difficult for large fish, such as adult sturgeons, not amenable to controlled laboratory experimentation. The purpose of this study was to determine if and when this assumption was valid for adult lake sturgeon Acipenser fulvescens tagged with large (34 g) acoustic transmitters and released into the St. Clair River during 2011–2014. The hypothesis that activity and reach-scale distributions of tagged and untagged lake sturgeon did not differ was tested by comparing movement frequencies, movement rates (speed-over-ground), and location-specific detection probabilities between newly-tagged lake sturgeon and presumably fully-recovered conspecifics tagged and released in prior years. Results Activity of acoustic-tagged lake sturgeon did not differ between newly-tagged individuals and conspecifics tagged in prior years. Movement frequencies and movement rates in all comparisons were similar between lake sturgeon observed during the first 15 days after surgery and simultaneously-observed conspecifics tagged in prior years. Likewise, lake sturgeon observed during the first 15 days after release were not more likely than conspecifics tagged in prior years to be distributed upstream or downstream of release sites. However, newly-tagged lake sturgeon were more likely than conspecifics tagged in prior years to be detected near release areas. Whether the cause for this ephemeral difference in detection probabilities was a behavioral response to surgery or a consequence of releasing newly-tagged individuals near receivers could not be determined. Conclusions Lack of evidence for changes in movement frequencies, movement rates, and distribution after surgical implantation of acoustic tags supported the assumption that movements of acoustic-tagged adult lake sturgeon were representative of untagged conspecifics. Thus, detection data gathered from recently tagged individuals is unlikely to bias data analyses in studies of lake sturgeon spatial ecology using telemetry. Our findings should apply to most tag sizes given that we used some of the largest acoustic tags currently available. The “staggered entry” design used in this study also may be useful for testing fundamental assumptions of biotelemetry studies for other large fish.
Eutrophication and Fisheries: Separating the Effects of Nitrogen Loads and Hypoxia on the Pelagic-to-Demersal Ratio and Other Measures of Landings Composition
Building on previous analyses suggesting that the composition of fishery landings reflects the effects of eutrophication on mobile fish and benthos, we examined landings composition in relation to nitrogen loading and the spatial extent of hypoxia in a cross-system comparison of 22 ecosystems. We hypothesized that explicit consideration of both N and hypoxia is important because nutrient enrichment has been shown to have contrasting direct and indirect effects on fisheries. Consistent with this premise, patterns in landings composition differed with respect to N load and the spatial extent of hypoxia. For example, the ratios of pelagic to benthic and demersal biomass in fishery landings (P/D) exhibited a decreasing trend across ecosystems with progressively higher N but were significantly and positively correlated with the spatial extent of hypoxia. The P/D ratios were particularly high in systems with extensive and persistent hypoxia and particularly low in several estuaries where purse seining is prohibited or not used. In analyses that considered all systems, benthic and demersal landings did not decrease at high N as predicted by previous conceptual models, and the negative association with the spatial extent of hypoxia was statistically significant only when the Black Sea was included in the analysis. Landings of pelagic planktivores did not vary with the spatial extent of hypoxia but were positively related to N for all systems combined and for semi-enclosed seas. The trophic and size composition of fishery landings were not related to N or hypoxia, perhaps because landings of large, high-trophic-level species are more influenced by fishery exploitation or practices that mask the effects of water quality. Our results suggest that the response of fisheries to eutrophication differs from prevailing paradigms, which do not clearly distinguish between nutrient and hypoxia effects on fishery landings and do not consider the important influence of fishing practices and regulations on patterns in landings data.