Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
16,140
result(s) for
"Hong, Liang"
Sort by:
Clinical and epidemiological features of 36 children with coronavirus disease 2019 (COVID-19) in Zhejiang, China: an observational cohort study
2020
Since December, 2019, an outbreak of coronavirus disease 2019 (COVID-19) has spread globally. Little is known about the epidemiological and clinical features of paediatric patients with COVID-19.
We retrospectively retrieved data for paediatric patients (aged 0–16 years) with confirmed COVID-19 from electronic medical records in three hospitals in Zhejiang, China. We recorded patients' epidemiological and clinical features.
From Jan 17 to March 1, 2020, 36 children (mean age 8·3 [SD 3·5] years) were identified to be infected with severe acute respiratory syndrome coronavirus 2. The route of transmission was by close contact with family members (32 [89%]) or a history of exposure to the epidemic area (12 [33%]); eight (22%) patients had both exposures. 19 (53%) patients had moderate clinical type with pneumonia; 17 (47%) had mild clinical type and either were asymptomatic (ten [28%]) or had acute upper respiratory symptoms (seven [19%]). Common symptoms on admission were fever (13 [36%]) and dry cough (seven [19%]). Of those with fever, four (11%) had a body temperature of 38·5°C or higher, and nine (25%) had a body temperature of 37·5–38·5°C. Typical abnormal laboratory findings were elevated creatine kinase MB (11 [31%]), decreased lymphocytes (11 [31%]), leucopenia (seven [19%]), and elevated procalcitonin (six [17%]). Besides radiographic presentations, variables that were associated significantly with severity of COVID-19 were decreased lymphocytes, elevated body temperature, and high levels of procalcitonin, D-dimer, and creatine kinase MB. All children received interferon alfa by aerosolisation twice a day, 14 (39%) received lopinavir–ritonavir syrup twice a day, and six (17%) needed oxygen inhalation. Mean time in hospital was 14 (SD 3) days. By Feb 28, 2020, all patients were cured.
Although all paediatric patients in our cohort had mild or moderate type of COVID-19, the large proportion of asymptomatic children indicates the difficulty in identifying paediatric patients who do not have clear epidemiological information, leading to a dangerous situation in community-acquired infections.
Ningbo Clinical Research Center for Children's Health and Diseases, Ningbo Reproductive Medicine Centre, and Key Scientific and Technological Innovation Projects of Wenzhou.
Journal Article
Gut Microbiota and Dysbiosis in Alzheimer’s Disease: Implications for Pathogenesis and Treatment
by
Liu, Kangding
,
Zhang, Hong-Liang
,
Gao, Jiguo
in
Alzheimer's disease
,
Communications systems
,
Dysbacteriosis
2020
Understanding how gut flora influences gut-brain communications has been the subject of significant research over the past decade. The broadening of the term “microbiota-gut-brain axis” from “gut-brain axis” underscores a bidirectional communication system between the gut and the brain. The microbiota-gut-brain axis involves metabolic, endocrine, neural, and immune pathways which are crucial for the maintenance of brain homeostasis. Alterations in the composition of gut microbiota are associated with multiple neuropsychiatric disorders. Although a causal relationship between gut dysbiosis and neural dysfunction remains elusive, emerging evidence indicates that gut dysbiosis may promote amyloid-beta aggregation, neuroinflammation, oxidative stress, and insulin resistance in the pathogenesis of Alzheimer’s disease (AD). Illustration of the mechanisms underlying the regulation by gut microbiota may pave the way for developing novel therapeutic strategies for AD. In this narrative review, we provide an overview of gut microbiota and their dysregulation in the pathogenesis of AD. Novel insights into the modification of gut microbiota composition as a preventive or therapeutic approach for AD are highlighted.
Journal Article
Harnessing Solar‐Driven Photothermal Effect toward the Water–Energy Nexus
by
Xu, Zhi‐Kang
,
Liang, Hong‐Qing
,
Zhang, Chao
in
Alternative energy sources
,
Aqueous solutions
,
Crude oil
2019
Producing affordable freshwater has been considered as a great societal challenge, and most conventional desalination technologies are usually accompanied with large energy consumption and thus struggle with the trade‐off between water and energy, i.e., the water–energy nexus. In recent decades, the fast development of state‐of‐the‐art photothermal materials has injected new vitality into the field of freshwater production, which can effectively harness abundant and clean solar energy via the photothermal effect to fulfill the blue dream of low‐energy water purification/harvesting, so as to reconcile the water–energy nexus. Driven by the opportunities offered by photothermal materials, tremendous effort has been made to exploit diverse photothermal‐assisted water purification/harvesting technologies. At this stage, it is imperative and important to review the recent progress and shed light on the future trend in this multidisciplinary field. Here, a brief introduction of the fundamental mechanism and design principle of photothermal materials is presented, and the emerging photothermal applications such as photothermal‐assisted water evaporation, photothermal‐assisted membrane distillation, photothermal‐assisted crude oil cleanup, photothermal‐enhanced photocatalysis, and photothermal‐assisted water harvesting from air are summarized. Finally, the unsolved challenges and future perspectives in this field are emphasized. It is envisioned that this work will help arouse future research efforts to boost the development of solar‐driven low‐energy water purification/harvesting. As a promising candidate to reconcile the water–energy nexus, solar‐driven low‐energy water purification/harvesting technologies have attracted increased attention. The latest progress, challenges, and prospective of engineering solar‐driven photothermal materials/devices and their potential applications are discussed, stimulating new thinking on the exploration of advanced technologies to fulfill the blue dream of low‐energy water purification/harvesting.
Journal Article
Elucidating ascorbate and aldarate metabolism pathway characteristics via integration of untargeted metabolomics and transcriptomics of the kidney of high-fat diet-fed obese mice
by
Liang, Hong
,
Song, Kang
in
Biology and Life Sciences
,
Carbohydrate metabolism
,
Chronic kidney failure
2024
Obesity is a major independent risk factor for chronic kidney disease and can activate renal oxidative stress injury. Ascorbate and aldarate metabolism is an important carbohydrate metabolic pathway that protects cells from oxidative damage. However the effect of oxidative stress on this pathway is still unclear. Therefore, the primary objective of this study was to investigate the ascorbate and aldarate metabolism pathway in the kidneys of high-fat diet-fed obese mice and determine the effects of oxidative stress. Male C57BL/6J mice were fed on a high-fat diet for 12 weeks to induce obesity. Subsequently, non-targeted metabolomics profiling was used to identify metabolites in the kidney tissues of the obese mice, followed by RNA sequencing using transcriptomic methods. The integrated analysis of metabolomics and transcriptomics revealed the alterations in the ascorbate and aldarate metabolic pathway in the kidneys of these high-fat diet-fed obese mice. The high-fat diet-induced obesity resulted in notable changes, including thinning of the glomerular basement membrane, alterations in podocyte morphology, and an increase in oxidative stress. Metabolomics analysis revealed 649 metabolites in the positive-ion mode, and 470 metabolites in the negative-ion mode. Additionally, 659 differentially expressed genes (DEGs) were identified in the obese mice, of which 34 were upregulated and 625 downregulated. Integrated metabolomics and transcriptomics analyses revealed two DEGs and 13 differential metabolites in the ascorbate and aldarate metabolic pathway. The expression levels of ugt1a9 and ugt2b1 were downregulated, and the ascorbate level in kidney tissue of obese mice was reduced. Thus, renal oxidative stress injury induced by high-fat diet affects metabolic regulation of ascorbate and aldarate metabolism in obese mice. Ascorbate emerged as a potential marker for predicting kidney damage due to high-fat diet-induced obesity.
Journal Article
Triglyceride-glucose index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome
by
Zhang, Ying-yi
,
Wang, Le
,
Yang, Hua
in
Acute coronary syndrome
,
Acute coronary syndromes
,
Angina pectoris
2020
Background
The triglyceride-glucose index (TyG index) has been regarded as a reliable alternative marker of insulin resistance and an independent predictor of cardiovascular outcomes. Whether the TyG index predicts adverse cardiovascular events in patients with diabetes and acute coronary syndrome (ACS) remains uncertain. The aim of this study was to investigate the prognostic value of the TyG index in patients with diabetes and ACS.
Methods
A total of 2531 consecutive patients with diabetes who underwent coronary angiography for ACS were enrolled in this study. Patients were divided into tertiles according to their TyG index. The primary outcomes included the occurrence of major adverse cardiovascular events (MACEs), defined as all-cause death, non-fatal myocardial infarction and non-fatal stroke. The TyG index was calculated as the ln (fasting triglyceride level [mg/dL] × fasting glucose level [mg/dL]/2).
Results
The incidence of MACE increased with TyG index tertiles at a 3-year follow-up. The Kaplan–Meier curves showed significant differences in event-free survival rates among TyG index tertiles (P = 0.005). Multivariate Cox hazards regression analysis revealed that the TyG index was an independent predictor of MACE (95% CI 1.201–1.746; P < 0.001). The optimal TyG index cut-off for predicting MACE was 9.323 (sensitivity 46.0%; specificity 63.6%; area under the curve 0.560; P = 0.001). Furthermore, adding the TyG index to the prognostic model for MACE improved the C-statistic value (P = 0.010), the integrated discrimination improvement value (P = 0.001) and the net reclassification improvement value (P = 0.019).
Conclusions
The TyG index predicts future MACE in patients with diabetes and ACS independently of known cardiovascular risk factors, suggesting that the TyG index may be a useful marker for risk stratification and prognosis in patients with diabetes and ACS.
Journal Article
Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview
2023
HighlightsRecent progress in noble metal-decorated (NM-D) semiconducting metal oxides (SMOs) gas sensors are summarized.Gas sensing mechanisms related to noble metal decoration are carefully discussed.Crucial challenges facing the development of NM-D SMOs gas sensors are analyzed.Highly sensitive gas sensors with remarkably low detection limits are attractive for diverse practical application fields including real-time environmental monitoring, exhaled breath diagnosis, and food freshness analysis. Among various chemiresistive sensing materials, noble metal-decorated semiconducting metal oxides (SMOs) have currently aroused extensive attention by virtue of the unique electronic and catalytic properties of noble metals. This review highlights the research progress on the designs and applications of different noble metal-decorated SMOs with diverse nanostructures (e.g., nanoparticles, nanowires, nanorods, nanosheets, nanoflowers, and microspheres) for high-performance gas sensors with higher response, faster response/recovery speed, lower operating temperature, and ultra-low detection limits. The key topics include Pt, Pd, Au, other noble metals (e.g., Ag, Ru, and Rh.), and bimetals-decorated SMOs containing ZnO, SnO2, WO3, other SMOs (e.g., In2O3, Fe2O3, and CuO), and heterostructured SMOs. In addition to conventional devices, the innovative applications like photo-assisted room temperature gas sensors and mechanically flexible smart wearable devices are also discussed. Moreover, the relevant mechanisms for the sensing performance improvement caused by noble metal decoration, including the electronic sensitization effect and the chemical sensitization effect, have also been summarized in detail. Finally, major challenges and future perspectives towards noble metal-decorated SMOs-based chemiresistive gas sensors are proposed.
Journal Article
Single cell imaging with near‐field terahertz scanning microscopy
by
Li, Zaoxia
,
Geng, Guoshuai
,
Yao, Chunyan
in
Antennas
,
Biological properties
,
Biological samples
2020
Objectives Terahertz (THz)‐based imaging techniques hold great potential for biological and biomedical applications, which nevertheless are hampered by the low spatial resolution of conventional THz imaging systems. In this work, we report a high‐performance photoconductive antenna microprobe‐based near‐field THz time‐domain spectroscopy scanning microscope. Materials and methods A single watermelon pulp cell was prepared on a clean quartz slide and covered by a thin polyethylene film. The high performance near‐field THz microscope was developed based on a coherent THz time‐domain spectroscopy system coupled with a photoconductive antenna microprobe. The sample was imaged in transmission mode. Results We demonstrate the direct imaging of the morphology of single watermelon pulp cells in the natural dehydration process with our near‐field THz microscope. Conclusions Given the label‐free and non‐destructive nature of THz detection techniques, our near‐field microscopy‐based single‐cell imaging approach sheds new light on studying biological samples with THz.
Journal Article
Tuft-cell-derived IL-25 regulates an intestinal ILC2–epithelial response circuit
by
von Moltke, Jakob
,
Ji, Ming
,
Liang, Hong-Erh
in
631/250/127/1213
,
631/250/2504/2506
,
631/250/255/1715
2016
Epithelial tuft cells are shown to be the source of intestinal interleukin (IL)-25 that is required for activation of type 2 innate lymphoid cells (ILC2s), ILC2-regulated tuft and goblet cell expansion, and control of parasite infection.
Epithelial tuft cells in type 2 immunity
The 'weep-and-sweep' response to parasitic helminths and allergens, in which parasites are ejected by increased propulsive activity of the gut combined with fluid and mucus secretion, is a manifestation of type 2 (or allergic) immunity involving the activation of group 2 innate lymphoid cells (ILC2s). The epithelium in the small intestine consists of five or more distinct cellular lineages, including tuft cells, whose functions remain unclear. Two papers in this issue of
Nature
demonstrate a role for tuft cells in the response to parasites. Richard Locksley and colleagues show that tuft cells are the source of the interleukin 25 (IL-25) that is required for activation of ILC2s, ILC2-regulated tuft and goblet cell expansion, and control of parasite infection. Philippe Jay and colleagues show that tuft cells secrete IL-25 via an IL-13/IL-4R -dependent feedback loop.
Parasitic helminths and allergens induce a type 2 immune response leading to profound changes in tissue physiology, including hyperplasia of mucus-secreting goblet cells
1
and smooth muscle hypercontractility
2
. This response, known as ‘weep and sweep’, requires interleukin (IL)-13 production by tissue-resident group 2 innate lymphoid cells (ILC2s) and recruited type 2 helper T cells (T
H
2 cells)
3
. Experiments in mice and humans have demonstrated requirements for the epithelial cytokines IL-33, thymic stromal lymphopoietin (TSLP) and IL-25 in the activation of ILC2s
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
, but the sources and regulation of these signals remain poorly defined. In the small intestine, the epithelium consists of at least five distinct cellular lineages
12
, including the tuft cell, whose function is unclear. Here we show that tuft cells constitutively express IL-25 to sustain ILC2 homeostasis in the resting lamina propria in mice. After helminth infection, tuft-cell-derived IL-25 further activates ILC2s to secrete IL-13, which acts on epithelial crypt progenitors to promote differentiation of tuft and goblet cells, leading to increased frequencies of both. Tuft cells, ILC2s and epithelial progenitors therefore comprise a response circuit that mediates epithelial remodelling associated with type 2 immunity in the small intestine, and perhaps at other mucosal barriers populated by these cells.
Journal Article
Integration Technology of Micro-LED for Next-Generation Display
by
Hong‐Liang Lu
,
Yu‐Chang Chen
,
Zeng, Guang
in
CMOS
,
Display devices
,
Group III-V semiconductors
2023
Inorganic micro light-emitting diodes (micro-LEDs) based on III-V compound semiconductors have been widely studied for self-emissive displays. From chips to applications, integration technology plays an indispensable role in micro-LED displays. For example, large-scale display relies on the integration of discrete device dies to achieve extended micro-LED array, and full color display requires integration of red, green, and blue micro-LED units on the same substrate. Moreover, the integration with transistors or complementary metal-oxide-semiconductor circuits are necessary to control and drive the micro-LED display system. In this review article, we summarized the 3 main integration technologies for micro-LED displays, which are called transfer integration, bonding integration, and growth integration. An overview of the characteristics of these 3 integration technologies is presented, while various strategies and challenges of integrated micro-LED display system are discussed.
Journal Article