Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
132
result(s) for
"Hong, Seok-Jun"
Sort by:
Microstructural and functional gradients are increasingly dissociated in transmodal cortices
by
Smallwood, Jonathan
,
Bethlehem, Richard A. I.
,
Seidlitz, Jakob
in
Adult
,
Aged
,
Biology and Life Sciences
2019
While the role of cortical microstructure in organising neural function is well established, it remains unclear how structural constraints can give rise to more flexible elements of cognition. While nonhuman primate research has demonstrated a close structure-function correspondence, the relationship between microstructure and function remains poorly understood in humans, in part because of the reliance on post mortem analyses, which cannot be directly related to functional data. To overcome this barrier, we developed a novel approach to model the similarity of microstructural profiles sampled in the direction of cortical columns. Our approach was initially formulated based on an ultra-high-resolution 3D histological reconstruction of an entire human brain and then translated to myelin-sensitive magnetic resonance imaging (MRI) data in a large cohort of healthy adults. This novel method identified a system-level gradient of microstructural differentiation traversing from primary sensory to limbic regions that followed shifts in laminar differentiation and cytoarchitectural complexity. Importantly, while microstructural and functional gradients described a similar hierarchy, they became increasingly dissociated in transmodal default mode and fronto-parietal networks. Meta-analytic decoding of these topographic dissociations highlighted involvement in higher-level aspects of cognition, such as cognitive control and social cognition. Our findings demonstrate a relative decoupling of macroscale functional from microstructural gradients in transmodal regions, which likely contributes to the flexible role these regions play in human cognition.
Journal Article
Atypical functional connectome hierarchy in autism
by
Smallwood, Jonathan
,
Bethlehem, Richard A. I.
,
Di Martino, Adriana
in
59/36
,
59/57
,
631/378/116/1925
2019
One paradox of autism is the co-occurrence of deficits in sensory and higher-order socio-cognitive processing. Here, we examined whether these phenotypical patterns may relate to an overarching system-level imbalance—specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks. Combining connectome gradient and stepwise connectivity analysis based on task-free functional magnetic resonance imaging (fMRI), we demonstrated atypical connectivity transitions between sensory and higher-order default mode regions in a large cohort of individuals with autism relative to typically-developing controls. Further analyses indicated that reduced differentiation related to perturbed stepwise connectivity from sensory towards transmodal areas, as well as atypical long-range rich-club connectivity. Supervised pattern learning revealed that hierarchical features predicted deficits in social cognition and low-level behavioral symptoms, but not communication-related symptoms. Our findings provide new evidence for imbalances in network hierarchy in autism, which offers a parsimonious reference frame to consolidate its diverse features.
Autism spectrum disorder (ASD) is associated with symptoms ranging from sensory hypersensitivity to social difficulties. Here, the authors provide evidence of atypical connectivity transitions between sensory and higher-order cortical areas in people with ASD, which could underlie the diverse symptoms.
Journal Article
Compressed sensorimotor-to-transmodal hierarchical organization in schizophrenia
by
Genon, Sarah
,
Eickhoff, Simon B.
,
Margulies, Daniel S.
in
Attention
,
Brain
,
Brain - diagnostic imaging
2023
Schizophrenia has been primarily conceptualized as a disorder of high-order cognitive functions with deficits in executive brain regions. Yet due to the increasing reports of early sensory processing deficit, recent models focus more on the developmental effects of impaired sensory process on high-order functions. The present study examined whether this pathological interaction relates to an overarching system-level imbalance, specifically a disruption in macroscale hierarchy affecting integration and segregation of unimodal and transmodal networks.
We applied a novel combination of connectome gradient and stepwise connectivity analysis to resting-state fMRI to characterize the sensorimotor-to-transmodal cortical hierarchy organization (96 patients
122 controls).
We demonstrated compression of the cortical hierarchy organization in schizophrenia, with a prominent compression from the sensorimotor region and a less prominent compression from the frontal-parietal region, resulting in a diminished separation between sensory and fronto-parietal cognitive systems. Further analyses suggested reduced differentiation related to atypical functional connectome transition from unimodal to transmodal brain areas. Specifically, we found hypo-connectivity within unimodal regions and hyper-connectivity between unimodal regions and fronto-parietal and ventral attention regions along the classical sensation-to-cognition continuum (voxel-level corrected,
< 0.05).
The compression of cortical hierarchy organization represents a novel and integrative system-level substrate underlying the pathological interaction of early sensory and cognitive function in schizophrenia. This abnormal cortical hierarchy organization suggests cascading impairments from the disruption of the somatosensory-motor system and inefficient integration of bottom-up sensory information with attentional demands and executive control processes partially account for high-level cognitive deficits characteristic of schizophrenia.
Journal Article
BrainStat: A toolbox for brain-wide statistics and multimodal feature associations
by
Bayrak, Şeyma
,
Rodriguez-Cruces, Raul
,
Larivière, Sara
in
Bioinformatics
,
Brain
,
Brain - diagnostic imaging
2023
•BrainStat is a toolbox for the statistical analysis and context decoding of neuroimaging data.•It implements univariate and multivariate linear models and interfaces with the BigBrain Atlas, Allen Human Brain Atlas and Nimare databases.•BrainStat handles surface, volume, and parcel level data formats, and provides a series of interactive visualization functions.•The toolbox has been implemented in Python and MATLAB.•BrainStat is openly available at https://github.com/MICA-MNI/BrainStat, and documented on https://brainstat.readthedocs.io/.
Analysis and interpretation of neuroimaging datasets has become a multidisciplinary endeavor, relying not only on statistical methods, but increasingly on associations with respect to other brain-derived features such as gene expression, histological data, and functional as well as cognitive architectures. Here, we introduce BrainStat - a toolbox for (i) univariate and multivariate linear models in volumetric and surface-based brain imaging datasets, and (ii) multidomain feature association of results with respect to spatial maps of post-mortem gene expression and histology, task-based fMRI meta-analysis, as well as resting-state fMRI motifs across several common surface templates. The combination of statistics and feature associations into a turnkey toolbox streamlines analytical processes and accelerates cross-modal research. The toolbox is implemented in both Python and MATLAB, two widely used programming languages in the neuroimaging and neuroinformatics communities. BrainStat is openly available and complemented by an expandable documentation.
Journal Article
BrainSpace: a toolbox for the analysis of macroscale gradients in neuroimaging and connectomics datasets
2020
Understanding how cognitive functions emerge from brain structure depends on quantifying how discrete regions are integrated within the broader cortical landscape. Recent work established that macroscale brain organization and function can be described in a compact manner with multivariate machine learning approaches that identify manifolds often described as cortical gradients. By quantifying topographic principles of macroscale organization, cortical gradients lend an analytical framework to study structural and functional brain organization across species, throughout development and aging, and its perturbations in disease. Here, we present BrainSpace, a Python/Matlab toolbox for (i) the identification of gradients, (ii) their alignment, and (iii) their visualization. Our toolbox furthermore allows for controlled association studies between gradients with other brain-level features, adjusted with respect to null models that account for spatial autocorrelation. Validation experiments demonstrate the usage and consistency of our tools for the analysis of functional and microstructural gradients across different spatial scales.
Vos de Wael et al. developed an open source tool called BrainSpace to quantify cortical gradients using 3 structural or functional imaging data. Their toolbox enables gradient identification, comparison, 4 visualization, and association with other brain features.
Journal Article
Toward a connectivity gradient-based framework for reproducible biomarker discovery
by
Smallwood, Jonathan
,
Margulies, Daniel S.
,
Vogelstein, Joshua
in
Adult
,
Algorithms
,
Biomarkers
2020
•There is a growing need to identify benchmark parameters in advancing a low dimensional representation of functional connectivity (i.e., gradients) into a reliable biomarker.•Here, we explored multidimensional parameter space in calculating functional gradients to improve their reproducibility, reliability and predictive validity.•We demonstrated that more reproducible and reliable gradient markers tend to have higher predictive power for unseen phenotypic scores across various cognitive domains.•We showed that the low-dimensional connectivity gradient approach could outperform conventional edge-based analyses in terms of predicting phenotypic scores.•We highlight the necessity of optimizing parameters for new imaging methods before their widespread deployment.
Despite myriad demonstrations of feasibility, the high dimensionality of fMRI data remains a critical barrier to its utility for reproducible biomarker discovery. Recent efforts to address this challenge have capitalized on dimensionality reduction techniques applied to resting-state fMRI, identifying principal components of intrinsic connectivity which describe smooth transitions across different cortical systems, so called “connectivity gradients”. These gradients recapitulate neurocognitively meaningful organizational principles that are present in both human and primate brains, and also appear to differ among individuals and clinical populations. Here, we provide a critical assessment of the suitability of connectivity gradients for biomarker discovery. Using the Human Connectome Project (discovery subsample=209; two replication subsamples= 209 × 2) and the Midnight scan club (n = 9), we tested the following key biomarker traits – reliability, reproducibility and predictive validity – of functional gradients. In doing so, we systematically assessed the effects of three analytical settings, including i) dimensionality reduction algorithms (i.e., linear vs. non-linear methods), ii) input data types (i.e., raw time series, [un-]thresholded functional connectivity), and iii) amount of the data (resting-state fMRI time-series lengths). We found that the reproducibility of functional gradients across algorithms and subsamples is generally higher for those explaining more variances of whole-brain connectivity data, as well as those having higher reliability. Notably, among different analytical settings, a linear dimensionality reduction (principal component analysis in our study), more conservatively thresholded functional connectivity (e.g., 95–97%) and longer time-series data (at least ≥20mins) was found to be preferential conditions to obtain higher reliability. Those gradients with higher reliability were able to predict unseen phenotypic scores with a higher accuracy, highlighting reliability as a critical prerequisite for validity. Importantly, prediction accuracy with connectivity gradients exceeded that observed with more traditional edge-based connectivity measures, suggesting the added value of a low-dimensional and multivariate gradient approach. Finally, the present work highlights the importance and benefits of systematically exploring the parameter space for new imaging methods before widespread deployment.
Journal Article
A whole-brain 3D myeloarchitectonic atlas: Mapping the Vogt-Vogt legacy to the cortical surface
2022
•Our myeloarchitectonic atlas builds on extensive meta-analyses-derived and ground-truth histological data.•Our atlas provides qualitative and quantitative 3D information on cortical myelin architecture.•MRI surrogate markers of myelin demonstrate close overlap with histological cortical parcellations, supporting biological validity of non-invasive metrics.•This atlas can be seamlessly integrated into widely used neuroimaging analysis software to inform studies in health and disease.
Building precise and detailed parcellations of anatomically and functionally distinct brain areas has been a major focus in Neuroscience. Pioneer anatomists parcellated the cortical manifold based on extensive histological studies of post-mortem brain, harnessing local variations in cortical cyto- and myeloarchitecture to define areal boundaries. Compared to the cytoarchitectonic field, where multiple neuroimaging studies have recently translated this old legacy data into useful analytical resources, myeloarchitectonics, which parcellate the cortex based on the organization of myelinated fibers, has received less attention. Here, we present the neocortical surface-based myeloarchitectonic atlas based on the histology-derived maps of the Vogt-Vogt school and its 2D translation by Nieuwenhuys. In addition to a myeloarchitectonic parcellation, our package includes intracortical laminar profiles of myelin content based on Vogt-Vogt-Hopf original publications. Histology-derived myelin density mapped on our atlas demonstrated a close overlap with in vivo quantitative MRI markers for myelin and relates to cytoarchitectural features. Complementing the existing battery of approaches for digital cartography, the whole-brain myeloarchitectonic atlas offers an opportunity to validate imaging surrogate markers of myelin in both health and disease.
Journal Article
Spatiotemporal integration of contextual and sensory information within the cortical hierarchy in human pain experience
by
Reynolds Losin, Elizabeth A.
,
Hong, Seok-Jun
,
Gim, Suhwan
in
Adult
,
Biology and Life Sciences
,
Brain
2024
Pain is not a mere reflection of noxious input. Rather, it is constructed through the dynamic integration of current predictions with incoming sensory input. However, the temporal dynamics of the behavioral and neural processes underpinning this integration remain elusive. In the current study involving 59 human participants, we identified a series of brain mediators that integrated cue-induced expectations with noxious inputs into ongoing pain predictions using a semicircular scale designed to capture rating trajectories. Temporal mediation analysis revealed that during the early-to-mid stages of integration, the frontoparietal and dorsal attention network regions, such as the lateral prefrontal, premotor, and parietal cortex, mediated the cue effects. Conversely, during the mid-to-late stages of integration, the somatomotor network regions mediated the effects of stimulus intensity, suggesting that the integration occurs along the cortical hierarchy from the association to sensorimotor brain systems. Our findings advance the understanding of how the brain integrates contextual and sensory information into pain experience over time.
Journal Article
Cross-species functional alignment reveals evolutionary hierarchy within the connectome
by
Fair, Damien A.
,
Schroeder, Charles E.
,
Goulas, Alexandros
in
Animal cognition
,
Animals
,
Biological Evolution
2020
•We developed a cross-species alignment that enables comparing and quantifying the functional homology between species.•We proposed a functional-based homology index that reflects the gradient of unimodal-transmodal hierarchy.•We characterized the cross-species similarity that follows the local hierarchies and supports the tethering hypothesis.•We suggest that the default mode network has changed in a complex manner during human evolution – even within subnetworks.
Evolution provides an important window into how cortical organization shapes function and vice versa. The complex mosaic of changes in brain morphology and functional organization that have shaped the mammalian cortex during evolution, complicates attempts to chart cortical differences across species. It limits our ability to fully appreciate how evolution has shaped our brain, especially in systems associated with unique human cognitive capabilities that lack anatomical homologues in other species. Here, we develop a function-based method for cross-species alignment that enables the quantification of homologous regions between humans and rhesus macaques, even when their location is decoupled from anatomical landmarks. Critically, we find cross-species similarity in functional organization reflects a gradient of evolutionary change that decreases from unimodal systems and culminates with the most pronounced changes in posterior regions of the default mode network (angular gyrus, posterior cingulate and middle temporal cortices). Our findings suggest that the establishment of the default mode network, as the apex of a cognitive hierarchy, has changed in a complex manner during human evolution – even within subnetworks.
Journal Article
Anatomical and microstructural determinants of hippocampal subfield functional connectome embedding
by
Smallwood, Jonathan
,
Bernasconi, Andrea
,
Margulies, Daniel S.
in
Adults
,
Anatomy & physiology
,
Biological Sciences
2018
The hippocampus plays key roles in cognition and affect and serves as a model system for structure/function studies in animals. So far, its complex anatomy has challenged investigations targeting its substructural organization in humans. State-of-the-art MRI offers the resolution and versatility to identify hippocampal subfields, assess its microstructure, and study topographical principles of its connectivity in vivo. We developed an approach to unfold the human hippocampus and examine spatial variations of intrinsic functional connectivity in a large cohort of healthy adults. In addition to mapping common and unique connections across subfields, we identified two main axes of subregional connectivity transitions. An anterior/posterior gradient followed long-axis landmarks and metaanalytical findings from task-based functional MRI, while a medial/lateral gradient followed hippocampal infolding and correlated with proxies of cortical myelin. Findings were consistent in an independent sample and highly stable across resting-state scans. Our results provide robust evidence for long-axis specialization in the resting human hippocampus and suggest an intriguing interplay between connectivity and microstructure.
Journal Article