Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
977 result(s) for "Hong, W. David"
Sort by:
AWZ1066S, a highly specific anti-Wolbachia drug candidate for a short-course treatment of filariasis
Onchocerciasis and lymphatic filariasis are two neglected tropical diseases that together affect ∼157 million people and inflict severe disability. Both diseases are caused by parasitic filarial nematodes with elimination efforts constrained by the lack of a safe drug that can kill the adult filaria (macrofilaricide). Previous proof-of-concept human trials have demonstrated that depleting >90% of the essential nematode endosymbiont bacterium, Wolbachia, using antibiotics, can lead to permanent sterilization of adult female parasites and a safe macrofilaricidal outcome. AWZ1066S is a highly specific anti-Wolbachia candidate selected through a lead optimization program focused on balancing efficacy, safety and drug metabolism/pharmacokinetic (DMPK) features of a thienopyrimidine/quinazoline scaffold derived from phenotypic screening. AWZ1066S shows superior efficacy to existing anti-Wolbachia therapies in validated preclinical models of infection and has DMPK characteristics that are compatible with a short therapeutic regimen of 7 days or less. This candidate molecule is well-positioned for onward development and has the potential to make a significant impact on communities affected by filariasis.
A tetraoxane-based antimalarial drug candidate that overcomes PfK13-C580Y dependent artemisinin resistance
K13 gene mutations are a primary marker of artemisinin resistance in Plasmodium falciparum malaria that threatens the long-term clinical utility of artemisinin-based combination therapies, the cornerstone of modern day malaria treatment. Here we describe a multinational drug discovery programme that has delivered a synthetic tetraoxane-based molecule, E209, which meets key requirements of the Medicines for Malaria Venture drug candidate profiles. E209 has potent nanomolar inhibitory activity against multiple strains of P. falciparum and P. vivax in vitro , is efficacious against P. falciparum in in vivo rodent models, produces parasite reduction ratios equivalent to dihydroartemisinin and has pharmacokinetic and pharmacodynamic characteristics compatible with a single-dose cure. In vitro studies with transgenic parasites expressing variant forms of K13 show no cross-resistance with the C580Y mutation, the primary variant observed in Southeast Asia. E209 is a superior next generation endoperoxide with combined pharmacokinetic and pharmacodynamic features that overcome the liabilities of artemisinin derivatives. Artemisinin-resistant Plasmodium is an increasing problem. Here, using a medicinal chemistry programme, the authors identify a tetraoxane-based drug candidate that shows no cross-resistance with an artemisinin-resistant strain (PfK13-C580Y) and is efficient in Plasmodium mouse models.
Industrial scale high-throughput screening delivers multiple fast acting macrofilaricides
Nematodes causing lymphatic filariasis and onchocerciasis rely on their bacterial endosymbiont, Wolbachia , for survival and fecundity, making Wolbachia a promising therapeutic target. Here we perform a high-throughput screen of AstraZeneca’s 1.3 million in-house compound library and identify 5 novel chemotypes with faster in vitro kill rates (<2 days) than existing anti- Wolbachia drugs that cure onchocerciasis and lymphatic filariasis. This industrial scale anthelmintic neglected tropical disease (NTD) screening campaign is the result of a partnership between the Anti- Wolbachia consortium (A∙WOL) and AstraZeneca. The campaign was informed throughout by rational prioritisation and triage of compounds using cheminformatics to balance chemical diversity and drug like properties reducing the chance of attrition from the outset. Ongoing development of these multiple chemotypes, all with superior time-kill kinetics than registered antibiotics with anti- Wolbachia activity, has the potential to improve upon the current therapeutic options and deliver improved, safer and more selective macrofilaricidal drugs. Parasitic nematodes causing onchocerciasis and lymphatic filariasis rely on a bacterial endosymbiont, Wolbachia , which is a validated therapeutic target. Here, Clare et al. perform a high-throughput screen of 1.3 million compounds and identify 5 chemotypes with faster kill rates than existing anti- Wolbachia drugs.
Generation of quinolone antimalarials targeting the Plasmodium falciparum mitochondrial respiratory chain for the treatment and prophylaxis of malaria
There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc1. Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.
Targeting the Ubiquinol-Reduction (Qi) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials
Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian’s equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties.
Pyrethroid activity-based probes for profiling cytochrome P450 activities associated with insecticide interactions
Pyrethroid insecticides are used to control diseases spread by arthropods. We have developed a suite of pyrethroid mimetic activity-based probes (PyABPs) to selectively label and identify P450s associated with pyrethroid metabolism. The probes were screened against pyrethroid-metabolizing and nonmetabolizing mosquito P450s, as well as rodent microsomes, to measure labeling specificity, plus cytochrome P450 oxidoreductase and b ₅ knockout mouse livers to validate P450 activation and establish the role for b ₅ in probe activation. Using PyABPs, we were able to profile active enzymes in rat liver microsomes and identify pyrethroid-metabolizing enzymes in the target tissue. These included P450s as well as related detoxification enzymes, notably UDP-glucuronosyltransferases, suggesting a network of associated pyrethroid-metabolizing enzymes, or “pyrethrome.” Considering the central role P450s play in metabolizing insecticides, we anticipate that PyABPs will aid in the identification and profiling of P450s associated with insecticide pharmacology in a wide range of species, improving understanding of P450–insecticide interactions and aiding the development of unique tools for disease control.
The biological evaluation of fusidic acid and its hydrogenation derivative as antimicrobial and anti-inflammatory agents
Fusidic acid (FA) (WU-FA-00) is the only commercially available antimicrobial from the fusidane family that has a narrow spectrum of activity against Gram-positive bacteria. Herein, the hydrogenation derivative (WU-FA-01) of FA was prepared and both compounds were examined against a panel of six bacterial strains. In addition, their anti-inflammatory properties were evaluated using a 12- -tetradecanoylphorbol-13-acetate (TPA)-induced mouse ear edema model. The results of the antimicrobial assay revealed that both WU-FA-00 and WU-FA-01 displayed a high level of antimicrobial activity against Gram-positive strains. Moreover, killing kinetic studies were performed and the results were in accordance with the minimum inhibitory concentration and minimum bactericidal concentration results. We also demonstrated that the topical application of WU-FA-00 and WU-FA-01 effectively decreased TPA-induced ear edema in a dose-dependent manner. This inhibitory effect was associated with the inhibition of TPA-induced upregulation of proinflammatory cytokines IL-1β, TNF-α, and COX-2. WU-FA-01 significantly suppressed the expression levels of p65, IκB-α, and p-IκB-α in the TPA-induced mouse ear model. Overall, our results showed that WU-FA-00 and WU-FA-01 not only had effective antimicrobial activities in vitro, especially to the Gram-positive bacteria, but also possessed strong anti-inflammatory effects in vivo. These results provide a scientific basis for developing FA derivatives as antimicrobial and anti-inflammatory agents.
A novel drug for uncomplicated malaria: targeted high throughput screening (HTS) against the type II NADH:ubiquinone oxidoreductase (PfNdh2) of Plasmodium falciparum
References 1. 1. Biagini GA, Viriyavejakul P, O'neill PM, Bray PG, Ward SA: Functional characterization and target validation of alternative complex I of Plasmodium falciparum mitochondria. Antimicrob Agents Chemother. 2006, 50: 1841-51. 10.1128/AAC.50.5.1841-1851.2006. * PubMed Central * CAS * Article * PubMed * Google Scholar 2. 2. Fisher N, Bray PG, Ward SA, Biagini GA: The malaria parasite type II NADH:quinone oxidoreductase: an alternative enzyme for an alternative lifestyle. Trends Parasitol. 2007, 23: 305-10. 10.1016/j.pt.2007.04.014. * CAS * Article * PubMed * Google Scholar 3. 3. Saleh A, Friesen J, Baumeister S, Gross U, Bohne W: Growth inhibition of Toxoplasma gondii and Plasmodium falciparum by nanomolar concentrations of 1-hydroxy-2-dodecyl-4(1H)quinolone, a high-affinity inhibitor of alternative (type II) NADH dehydrogenases. Antimicrob Agents Chemother. 2007, 51: 1217-224. 10.1128/AAC.00895-06. * PubMed Central * CAS * Article * PubMed * Google Scholar 4. 4. Fisher N, Warman AJ, Ward SA, Biagini GA: Chapter 17 Type II NADH: quinone oxidoreductases of Plasmodium falciparum and Mycobacterium tuberculosis kinetic and high-throughput assays. Methods Enzymol. 2009, 456: 303-20. full_text. * CAS * Article * PubMed * Google Scholar Download references
Targeting the Ubiquinol-Reduction (Q i ) Site of the Mitochondrial Cytochrome bc 1 Complex for the Development of Next Generation Quinolone Antimalarials
Antimalarials targeting the ubiquinol-oxidation (Q ) site of the bc complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Q site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for cytochrome . Our crystallographic studies have enabled comparison of an in-silico homology docking model of with the mammalian's equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and Q sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite with improved antimalarial properties.
Remdesivir-Ivermectin combination displays synergistic interaction with improved in vitro antiviral activity against SARS-CoV-2
A key element for the prevention and management of COVID-19 is the development of effective therapeutics. Drug combination strategies of repurposed drugs offer several advantages over monotherapies, including the potential to achieve greater efficacy, the potential to increase the therapeutic index of drugs and the potential to reduce the emergence of drug resistance. Here, we report on the in vitro synergistic interaction between two FDA approved drugs, remdesivir and ivermectin resulting in enhanced antiviral activity against SARS-CoV-2. These findings warrant further investigations into the clinical potential of this combination, together with studies to define the underlying mechanism. Competing Interest Statement A.O. is a Director of Tandem Nano Ltd. A.O. has received research funding from ViiV, Merck, Janssen and consultancy from Gilead. These associations had no influence over the content of the current manuscript. P.O.N. is currently engaged in a collaboration with Romark LLC but this interaction had no influence over the content of the current manuscript. No other conflicts are declared by the authors. Footnotes * Figure 2 updated, author list updated.