Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
6,647 result(s) for "Hong, Ye"
Sort by:
Inactivation of porcine endogenous retrovirus in pigs using CRISPR-Cas9
Xenotransplantation is a promising strategy to alleviate the shortage of organs for human transplantation. In addition to the concerns about pig-to-human immunological compatibility, the risk of cross-species transmission of porcine endogenous retroviruses (PERVs) has impeded the clinical application of this approach. We previously demonstrated the feasibility of inactivating PERV activity in an immortalized pig cell line. We now confirm that PERVs infect human cells, and we observe the horizontal transfer of PERVs among human cells. Using CRISPR-Cas9, we inactivated all of the PERVs in a porcine primary cell line and generated PERV-inactivated pigs via somatic cell nuclear transfer. Our study highlights the value of PERV inactivation to prevent cross-species viral transmission and demonstrates the successful production of PERV-inactivated animals to address the safety concern in clinical xenotransplantation.
Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media
Carbon capture is essential for mitigating carbon dioxide emissions. Compared to conventional chemical scrubbing, electrochemically mediated carbon capture utilizing redox-active sorbents such as quinones is emerging as a more versatile and economical alternative. However, the practicality of such systems is hindered by the requirement of toxic, flammable organic electrolytes or often costly ionic liquids. Herein, we demonstrate that rationally designed aqueous electrolytes with high salt concentration can effectively resolve the incompatibility between aqueous environments and quinone electrochemistry for carbon capture, eliminating the safety, toxicity, and at least partially the cost concerns in previous studies. Salt-concentrated aqueous media also offer distinct advantages including extended electrochemical window, high carbon dioxide activity, significantly reduced evaporative loss and material dissolution, and importantly, greatly suppressed competing reactions including under simulated flue gas. Correspondingly, we achieve continuous carbon capture-release operations with outstanding capacity, stability, efficiency and electrokinetics, advancing electrochemical carbon separation further towards practical applications.
Robust gold nanorods stabilized by bidentate N-heterocyclic-carbene-thiolate ligands
Although N-heterocyclic carbenes (NHCs) have demonstrated outstanding potential for use as surface anchors, synthetic challenges have limited their application to either large planar substrates or very small spherical nanoparticles. The development of a strategy to graft NHCs onto non-spherical nanomaterials, such as gold nanorods, would greatly expand their utility as surface ligands. Here, we use a bidentate thiolate-NHC-gold(I) complex that is easily grafted onto commercial cetyl trimethylammonium bromide-stabilized gold nanorods through ligand exchange. On mild reduction of the resulting surface-tethered NHC-gold(I) complexes, the gold atom attached to the NHC complex is added to the surface as an adatom, thereby precluding the need for reorganization of the underlying surface lattice upon NHC binding. The resulting thiolate-NHC-stabilized gold nanorods are stable towards excess glutathione for up to six days, and under conditions with large variations in pH, high and low temperatures, high salt concentrations, or in biological media and cell culture. We also demonstrate the utility of these nanorods for in vitro photothermal therapy.
Strong spin squeezing induced by weak squeezing of light inside a cavity
We propose a simple method for generating spin squeezing of atomic ensembles in a Floquet cavity subject to a weak, detuned two-photon driving. We demonstrate that . This is achieved by exploiting the anti-Stokes scattering process of a photon pair interacting with an atom. Specifically, . The scattering, combined with a Floquet sideband, provides an alternative mechanism to implement Heisenberg-limited spin squeezing. Our proposal does need multiple classical and cavity-photon drivings applied to atoms in ensembles, and therefore its experimental feasibility is greatly improved compared to other cavity-based schemes. As an example, we demonstrate a possible implementation with a superconducting resonator coupled to a nitrogen-vacancy electronic-spin ensemble.
Light scattering in stacked mesophyll cells results in similarity characteristic of solar spectral reflectance and transmittance of natural leaves
Solar spectral reflectance and transmittance of natural leaves exhibit dramatic similarity. To elucidate the formation mechanism and physiological significance, a radiative transfer model was constructed, and the effects of stacked mesophyll cells, chlorophyll content and leaf thickness on the visible light absorptance of the natural leaves were analyzed. Results indicated that light scattering caused by the stacked mesophyll cells is responsible for the similarity. The optical path of visible light in the natural leaves is increased with the scattering process, resulting in that the visible light transmittance is significantly reduced meanwhile the visible light reflectance is at a low level, thus the visible light absorptance tends to a maximum and the absorption of photosynthetically active radiation (PAR) by the natural leaves is significantly enhanced. Interestingly, as two key leaf functional traits affecting the absorption process of PAR, chlorophyll content and leaf thickness of the natural leaves in a certain environment show a convergent behavior, resulting in the high visible light absorptance of the natural leaves, which demonstrates the PAR utilizing strategies of the natural leaves. This work provides a new perspective for revealing the evolutionary processes and ecological strategies of natural leaves, and can be adopted to guide the improvement directions of crop photosynthesis.
Low-density lipoprotein receptor (LDLR) regulates NLRP3-mediated neuronal pyroptosis following cerebral ischemia/reperfusion injury
Abstract Background Inflammatory response has been recognized as a pivotal pathophysiological process during cerebral ischemic stroke. NLRP3 inflammasome, involved in the regulation of inflammatory cascade, can simultaneously lead to GSDMD-executed pyroptosis in cerebral ischemia. Low-density lipoprotein receptor (LDLR), responsible for cholesterol uptake, was noted to exert potential anti-inflammatory bioactivities. Nevertheless, the role of LDLR in neuroinflammation mobilized by cerebral ischemia/reperfusion (I/R) has not been investigated. Methods Ischemic stroke mice model was accomplished by middle cerebral artery occlusion. Oxygen-glucose deprivation was employed after primary cortical neuron was extracted and cultured. A pharmacological inhibitor of NLRP3 (CY-09) was administered to suppress NLPR3 activation. Histological and biochemical analysis were performed to assess the neuronal death both in vitro and in vivo. In addition, neurological deficits and behavioral deterioration were evaluated in mice. Results The expression of LDLR was downregulated following cerebral I/R injury. Genetic knockout of Ldlr enhanced caspase-1-dependent cleavage of GSDMD and resulted in severe neuronal pyroptosis. LDLR deficiency contributed to excessive NLRP3-mediated maturation and release of IL-1β and IL-18 under in vitro and in vivo ischemic conditions. These influences ultimately led to aggravated neurological deficits and long-term cognitive dysfunction. Blockade of NLRP3 substantially retarded neuronal pyroptosis in Ldlr −/− mice and cultured Ldlr −/− neuron after experimental stroke. Conclusions These results demonstrated that LDLR modulates NLRP3-mediated neuronal pyroptosis and neuroinflammation following ischemic stroke. Our findings characterize a novel role for LDLR as a potential therapeutic target in neuroinflammatory responses to acute cerebral ischemic injury.
Conformal Microfluidic‐Blow‐Spun 3D Photothermal Catalytic Spherical Evaporator for Omnidirectional Enhanced Solar Steam Generation and CO2 Reduction
Solar‐driven water evaporation and valuable fuel generation is an environmentally friendly and sustainable way for clean water and energy production. However, a few bottlenecks for practical applications are high‐cost, low productivity, and severe sunlight angle dependence. Herein, solar evaporation with enhanced photocatalytic capacity that is light direction insensitive and of efficiency breakthrough by virtue of a three‐dimensional (3D) photothermal catalytic spherical isotopic evaporator is demonstrated. A homogeneous layer of microfluidic blow spun polyamide nanofibers loaded with efficient light absorber of polypyrrole nanoparticles conformally wraps onto a lightweight, thermal insulating plastic sphere, featuring favorable interfacial solar heating and efficient water transportation. The 3D spherical geometry not only guarantees the omnidirectional solar absorbance by the light‐facing hemisphere, but also keeps the other hemisphere under shadow to harvest energy from the warmer environment. As a result, the light‐to‐vapor efficiency exceeds the theoretical limit, reaching 217% and 156% under 1 and 2 sun, respectively. Simultaneously, CO2 photoreduction with generated steam reveals a favorable clean fuels production rate using photocatalytic spherical evaporator by secondary growth of Cu2O nanoparticles. Finally, an outdoor demonstration manifests a high evaporation rate and easy‐to‐perform construction on‐site, providing a promising opportunity for efficient and decentralized water and clean fuel production. A three‐dimensional (3D) photothermal catalytic spherical evaporator with double‐layer structure that enables the theoretical light‐to‐vapor efficiency limits breakthrough and efficient clean fuels production. The isotropy of spherical structure exhibits the omnidirectional light absorption, reducing the influence of natural light incident angle on solar evaporation rate and circumventing the trade‐off between water condensation and photocatalytic reaction, which is significant for practical applications.
Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries
Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g at ~35 C (fully charged within ~100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. So instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination.Water is usually not favorable in high-voltage window aprotic electrolytes. Here the authors discover some lithium titanate hydrates that allow superior power rate and ultralong cycle life in aprotic electrolytes.
Single-nucleus transcriptome sequencing reveals hepatic cell atlas in pigs
As the largest substantive organ of animals, the liver plays an essential role in the physiological processes of digestive metabolism and immune defense. However, the cellular composition of the pig liver remains poorly understood. This investigation used single-nucleus RNA sequencing technology to identify cell types from liver tissues of pigs, providing a theoretical basis for further investigating liver cell types in pigs. The analysis revealed 13 cells clusters which were further identified 7 cell types including endothelial cells, T cells, hepatocytes, Kupffer cells, stellate cells, B cells, and cholangiocytes. The dominant cell types were endothelial cells, T cells and hepatocytes in the liver tissue of Dahe pigs and Dahe black pigs, which accounts for about 85.76% and 82.74%, respectively. The number of endothelial cells was higher in the liver tissue of Dahe pigs compared to Dahe black pigs, while the opposite tendency was observed for T cells. Moreover, functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic endothelial cells were significantly enriched in the protein processing in endoplasmic reticulum, MAPK signaling pathway, and FoxO signaling pathway. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic T cells were significantly enriched in the thyroid hormone signaling pathway, B cell receptor signaling pathway, and focal adhesion. Functional enrichment analysis demonstrated that the differentially expressed genes in pig hepatic hepatocytes were significantly enriched in the metabolic pathways. In summary, this study provides a comprehensive cell atlas of porcine hepatic tissue. The number, gene expression level and functional characteristics of each cell type in pig liver tissue varied between breeds.