Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
74 result(s) for "Hong, Zi‐Xuan"
Sort by:
Vitamin D and Diabetic Kidney Disease
Vitamin D is a hormone involved in many physiological processes. Its active form, 1,25(OH)2D3, modulates serum calcium–phosphate homeostasis and skeletal homeostasis. A growing body of evidence has demonstrated the renoprotective effects of vitamin D. Vitamin D modulates endothelial function, is associated with podocyte preservation, regulates the renin–angiotensin–aldosterone system, and has anti-inflammatory effects. Diabetic kidney disease (DKD) is a leading cause of end-stage kidney disease worldwide. There are numerous studies supporting vitamin D as a renoprotector, potentially delaying the onset of DKD. This review summarizes the findings of current research on vitamin D and its role in DKD.
Bioengineered skin organoids: from development to applications
Significant advancements have been made in recent years in the development of highly sophisticated skin organoids. Serving as three-dimensional models that mimic human skin, these organoids have evolved into complex structures and are increasingly recognized as effective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional systems and ethical concerns. The inherent plasticity of skin organoids allows for their construction into physiological and pathological models, enabling the study of skin development and dynamic changes. This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages. Furthermore, it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques, such as 3D printing and microfluidic devices. The review also summarizes and discusses the diverse applications of skin organoids in developmental biology, disease modelling, regenerative medicine, and personalized medicine, while considering their prospects and limitations.
NTRK3 exhibits a pro‐oncogenic function in upper tract urothelial carcinomas
Neurotrophic receptor tyrosine kinase 3 (NTRK3) has pleiotropic functions: it acts not only as an oncogene in breast and gastric cancers but also as a dependence receptor in tumor suppressor genes in colon cancer and neuroblastomas. However, the role of NTRK3 in upper tract urothelial carcinoma (UTUC) is not well documented. This study investigated the association between NTRK3 expression and outcomes in UTUC patients and validated the results in tests on UTUC cell lines. A total of 118 UTUC cancer tissue samples were examined to evaluate the expression of NTRK3. Survival curves were generated using Kaplan–Meier estimates, and Cox regression models were used for investigating survival outcomes. Higher NTRK3 expression was correlated with worse progression‐free survival, cancer‐specific survival, and overall survival. Moreover, the results of an Ingenuity Pathway Analysis suggested that NTRK3 may interact with the PI3K‐AKT‐mTOR signaling pathway to promote cancer. NTRK3 downregulation in BFTC909 cells through shRNA reduced cellular migration, invasion, and activity in the AKT‐mTOR pathway. Furthermore, the overexpression of NTRK3 in UM‐UC‐14 cells promoted AKT‐mTOR pathway activity, cellular migration, and cell invasion. From these observations, we concluded that NTRK3 may contribute to aggressive behaviors in UTUC by facilitating cell migration and invasion through its interaction with the AKT‐mTOR pathway and the expression of NTRK3 is a potential predictor of clinical outcomes in cases of UTUC.
IFIT2‐depleted metastatic oral squamous cell carcinoma cells induce muscle atrophy and cancer cachexia in mice
Background Interferon‐induced protein with tetratricopeptide repeat 2 (IFIT2) is a reported metastasis suppressor in oral squamous cell carcinoma (OSCC). Metastases and cachexia may coexist. The effect of cancer metastasis on cancer cachexia is largely unknown. We aimed to address this gap in knowledge by characterizing the cachectic phenotype of an IFIT2‐depleted metastatic OSCC mouse model. Methods Genetically engineered and xenograft tumour models were used to explore the effect of IFIT2‐depleted metastatic OSCC on cancer cachexia. Muscle and organ weight changes, tumour burden, inflammatory cytokine profiles, body composition, food intake, serum albumin and C‐reactive protein (CRP) levels, and survival were assessed. The activation of the IL6/p38 pathway in atrophied muscle was measured. Results IFIT2‐depleted metastatic tumours caused marked body weight loss (−18.2% vs. initial body weight, P < 0.001) and a poor survival rate (P < 0.01). Skeletal muscles were markedly smaller in IFIT2‐depleted metastatic tumour‐bearing mice (quadriceps: −28.7%, gastrocnemius: −29.4%, and tibialis: −24.3%, all P < 0.001). Tumour‐derived circulating granulocyte‐macrophage colony‐stimulating factor (+772.2‐fold, P < 0.05), GROα (+1283.7‐fold, P < 0.05), IL6 (+245.8‐fold, P < 0.001), IL8 (+616.9‐fold, P < 0.001), IL18 (+24‐fold, P < 0.05), IP10 (+18.8‐fold, P < 0.001), CCL2 (+439.2‐fold, P < 0.001), CCL22 (+9.1‐fold, P < 0.01) and tumour necrosis factor α (+196.8‐fold, P < 0.05) were elevated in IFIT2‐depleted metastatic tumour‐bearing mice. Murine granulocyte colony‐stimulating factor (+61.4‐fold, P < 0.001) and IL6 (+110.9‐fold, P < 0.01) levels were significantly increased in IFIT2‐depleted metastatic tumour‐bearing mice. Serum CRP level (+82.1%, P < 0.05) was significantly increased in cachectic shIFIT2 mice. Serum albumin level (−26.7%, P < 0.01) was significantly decreased in cachectic shIFIT2 mice. An assessment of body composition revealed decreased fat (−81%, P < 0.001) and lean tissue (−21.7%, P < 0.01), which was consistent with the reduced food intake (−19.3%, P < 0.05). Muscle loss was accompanied by a smaller muscle cross‐sectional area (−23.3%, P < 0.05). Muscle atrophy of cachectic IFIT2‐depleted metastatic tumour‐bearing mice (i.v.‐shIFIT2 group) was associated with elevated IL6 (+2.7‐fold, P < 0.05), phospho‐p38 (+2.8‐fold, P < 0.05), and atrogin‐1 levels (+2.3‐fold, P < 0.05) in the skeletal muscle. Neutralization of IL6 rescued shIFIT2 conditioned medium‐induced myotube atrophy (+24.6%, P < 0.01). Conclusions Our results suggest that the development of shIFIT2 metastatic OSCC lesions promotes IL6 production and is accompanied by the loss of fat and lean tissue, anorexia, and muscle atrophy. This model is appropriate for the study of OSCC cachexia, especially in linking metastasis with cachexia.
Antitumor Effects of the Novel Quinazolinone Holu-12: Induction of Mitotic Arrest and Apoptosis in Human Oral Squamous Cell Carcinoma CAL27 Cells
Quinazolinone is a privileged chemical structure employed for targeting various types of cancer. This study aimed to demonstrate the antitumor activity of synthesized 6,7-disubstituted-2-(3-fluorophenyl) quinazolines (HoLu-11 to HoLu-14). The cytotoxicity was assessed by the sulforhodamine B (SRB) assay. The cell cycle was examined by flow cytometry. The expression levels of cell cycle- and apoptosis-related proteins were estimated by western blotting. A xenograft animal model was used to explore the antitumor effects of HoLu-12. Among four synthetic quinazolinone derivatives, HoLu-12 significantly reduced the viability of oral squamous cell carcinoma (OSCC) cells. HoLu-12 induced G /M arrest and increased the expression of cyclin B, histone H3 (Ser10) phosphorylation, and cleaved PARP, indicating that HoLu-12 could induce mitotic arrest and then apoptosis. Moreover, the combination of HoLu-12 and 5-fluorouracil (5-FU) displayed synergistic toxic effect on OSCC cells. HoLu-12 significantly inhibited tumor growth in vivo. HoLu-12 induces mitotic arrest and leads to apoptosis of OSCC cells. Furthermore, HoLu-12 alone or in combination with 5-FU is a potential therapeutic agent for OSCC.
Effect of Shensong Yangxin on the Progression of Paroxysmal Atrial Fibrillation is Correlated with Regulation of Autonomic Nerve Activity
Background: Shensong Yangxin (SSYX), a traditional Chinese herbal medicine, has long been used clinically to treat arrhythmias in China. However, the mechanism of SSYX on atrial fibrillation (AF) is unknown. In this study, we tested the hypothesis that the effect of SSYX on the progression of paroxysmal AF is correlated with the regulation of autonomic nerve activity. Methods: Eighteen mongrel dogs were randomly divided into control group (n = 6), pacing group (n = 6), and pacing + SSYX group (n = 6). The control group was implanted with pacemakers without pacing; the pacing group was implanted with pacemakers with long-term intermittent atrial pacing; the pacing + SSYX group underwent long-term intermittent atrial pacing and SSYX oral administration. Results: Compared to the pacing group, the parameters of heart rate variability were lower after 8 weeks in the pacing + SSYX group (low-frequency [LF] component: 20.85± 3.14 vs. 15.3±1.89 ms2, P =0.004; LF component/high-frequency component: 1.34 ± 0.33 vs. 0.77± 0.15, P 〈 0.001 ). The atrial effective refractory period (AERP) was shorter and the dispersion of the AERP was higher after 8 weeks in the pacing group, while the changes were suppressed by SSYX intake. The dogs in the pacing group had more episodes and longer durations of AF than that in the pacing + SSYX group. SSYX markedly inhibited the increase in sympathetic nerves and upregulation of tumor necrosis factor-alpha and interleukin-6 expression in the pacing + SSYX group. Furthermore, SSYX suppressed the decrease of acetylcholine and α7 nicotinic acetylcholine receptor protein induced by long-term intermittent atrial pacing. Conclusions: SSYX substantially prevents atrial electrical remodeling and the progression of AF. These effects of SSYX may have association with regulating the imbalance of autonomic nerve activity and the cholinergic anti-inflammatory pathway.
Artesunate synergizes with sorafenib to induce ferroptosis in hepatocellular carcinoma
Sorafenib is the first-line medication for advanced hepatocellular carcinoma (HCC), but it can only extend limited survival. It is imperative to find a combination strategy to increase sorafenib efficacy. Artesunate is such a preferred candidate, because artesunate is clinically well-tolerated and more importantly both drugs can induce ferroptosis through different mechanisms. In this study we investigated the combined effect of sorafenib and artesunate in inducing ferroptosis of HCC and elucidated the involved molecular mechanisms. We showed that artesunate greatly enhanced the anticancer effects of low dose of sorafenib against Huh7, SNU-449, and SNU-182 HCC cell lines in vitro and against Huh7 cell xenograft model in Balb/c nude mice. The combination index method confirmed that the combined effect of sorafenib and artesunate was synergistic. Compared with the treatment with artesunate or sorafenib alone, combined treatment induced significantly exacerbated lipid peroxidation and ferroptosis, which was blocked by N-acetyl cysteine and ferroptosis inhibitors liproxstatin-1 and deferoxamine mesylate, but not by inhibitors of other types of cell death (z-VAD, necrostatin-1 and belnacasan). In Huh7 cells, we demonstrated that the combined treatment induced oxidative stress and lysosome-mediated ferritinophagy, two essential aspects of ferroptosis. Sorafenib at low dose mainly caused oxidative stress through mitochondrial impairments and SLC7A11-invovled glutathione depletion. Artesunate-induced lysosome activation synergized with sorafenib-mediated pro-oxidative effects by promoting sequential reactions including lysosomal cathepsin B/L activation, ferritin degradation, lipid peroxidation, and consequent ferroptosis. Taken together, artesunate could be repurposed to sensitize sorafenib in HCC treatment. The combined treatment can be easily translated into clinical applications.
Adsorption of Cadmium Ions from an Aqueous Solution on a Highly Stable Dopamine-Modified Magnetic Nano-Adsorbent
Magnetic nanomaterials were functionalized with dopamine hydrochloride as the functional reagent to afford a core–shell-type Fe 3 O 4 modified with polydopamine (Fe 3 O 4 @PDA) composite, which was used for the adsorption of cadmium ions from an aqueous solution. In addition, the effects of environmental factors on the adsorption capacity were investigated. Furthermore, the adsorption kinetics, isotherm, and thermodynamics of the adsorbents were discussed. Results revealed that the adsorption of cadmium by Fe 3 O 4 @PDA reaches equilibrium within 120 min, and kinetic fitting data are consistent with the pseudo-second-order kinetics ( R 2  > 0.999). The adsorption isotherm of Cd 2+ on Fe 3 O 4 @PDA was in agreement with the Freundlich model, with the maximum adsorption capacity of 21.58 mg/g. The thermodynamic parameters revealed that adsorption is inherently endothermic and spontaneous. Results obtained from the adsorption–desorption cycles revealed that Fe 3 O 4 @PDA exhibits ultra-high adsorption stability and reusability. Furthermore, the adsorbents were easily separated from water under an enhanced external magnetic field after adsorption due to the introduction of an iron-based core. Hence, this study demonstrates a promising magnetic nano-adsorbent for the effective removal of cadmium from cadmium-containing wastewater. Graphical Abstract
Balancing fairness and efficiency in dynamic vaccine allocation during major infectious disease outbreaks
The outbreak of novel infectious diseases presents major public health challenges, highlighting the urgency of accelerating vaccination efforts to reduce morbidity and mortality. Vaccine allocation has become a crucial societal concern. This paper introduces a dynamic vaccine allocation model that considers demand uncertainty and vaccination willingness, focusing on the trade-off between fairness and efficiency. We develop a multi-period dynamic vaccine allocation model, evaluating optimal strategies over different periods. The model addresses structural differences among vaccination groups, strategy selection, dynamic demand, and vaccination willingness. Our findings suggest that prioritizing efficiency in the initial outbreak stages may lead to inequitable distribution, causing adverse social impacts, while overemphasizing fairness can undermine overall utility. Therefore, we propose a dynamic optimization-based strategy balancing fairness and efficiency at different pandemic stages. Our results indicate that allocation strategies should shift from efficiency to fairness as the pandemic evolves to enhance vaccine utility. Additionally, macro-level interventions like reducing free-rider behavior and increasing vaccination convenience can improve total vaccine utility. This study offers new perspectives and methodologies for dynamic vaccine allocation, highlighting the trade-off between fairness and efficiency, providing crucial insights for policy formulation and pandemic response.
A systematic review of state-of-the-art strategies for machine learning-based protein function prediction
New drug discovery is inseparable from the discovery of drug targets, and the vast majority of the known targets are proteins. At the same time, proteins are essential structural and functional elements of living cells necessary for the maintenance of all forms of life. Therefore, protein functions have become the focus of many pharmacological and biological studies. Traditional experimental techniques are no longer adequate for rapidly growing annotation of protein sequences, and approaches to protein function prediction using computational methods have emerged and flourished. A significant trend has been to use machine learning to achieve this goal. In this review, approaches to protein function prediction based on the sequence, structure, protein-protein interaction (PPI) networks, and fusion of multi-information sources are discussed. The current status of research on protein function prediction using machine learning is considered, and existing challenges and prominent breakthroughs are discussed to provide ideas and methods for future studies. •The methods for protein function prediction in the last five years are summarized.•Discussing methods apply multi-algorithm combinations to predict protein function.•Methods based on multi-information source prediction are discussed.•Difficulties are pointed out and breakthrough developments are emphasized.