Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
10
result(s) for
"Hoorntje, Edgar T."
Sort by:
Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis
by
Jan, Sabrina Z.
,
Franke, Lude
,
van Ravenswaaij-Arts, Conny M. A.
in
38/91
,
45/23
,
631/114/2401
2019
The diagnostic yield of exome and genome sequencing remains low (8–70%), due to incomplete knowledge on the genes that cause disease. To improve this, we use RNA-seq data from 31,499 samples to predict which genes cause specific disease phenotypes, and develop GeneNetwork Assisted Diagnostic Optimization (GADO). We show that this unbiased method, which does not rely upon specific knowledge on individual genes, is effective in both identifying previously unknown disease gene associations, and flagging genes that have previously been incorrectly implicated in disease. GADO can be run on
www.genenetwork.nl
by supplying HPO-terms and a list of genes that contain candidate variants. Finally, applying GADO to a cohort of 61 patients for whom exome-sequencing analysis had not resulted in a genetic diagnosis, yields likely causative genes for ten cases.
A genetic diagnosis remains unattainable for many individuals with a rare disease because of incomplete knowledge about the genetic basis of many diseases. Here, the authors present the web-based tool GADO (GeneNetwork Assisted Diagnostic Optimization) that uses public RNA-seq data for prioritization of candidate genes.
Journal Article
No major role for rare plectin variants in arrhythmogenic right ventricular cardiomyopathy
by
Posafalvi, Anna
,
Boven, Ludolf G.
,
Wilde, Arthur A.
in
Arrhythmogenic Right Ventricular Dysplasia - genetics
,
Arrhythmogenic Right Ventricular Dysplasia - metabolism
,
Arrhythmogenic Right Ventricular Dysplasia - pathology
2018
Likely pathogenic/pathogenic variants in genes encoding desmosomal proteins play an important role in the pathophysiology of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, for a substantial proportion of ARVC patients, the genetic substrate remains unknown. We hypothesized that plectin, a cytolinker protein encoded by the PLEC gene, could play a role in ARVC because it has been proposed to link the desmosomal protein desmoplakin to the cytoskeleton and therefore has a potential function in the desmosomal structure.
We screened PLEC in 359 ARVC patients and compared the frequency of rare coding PLEC variants (minor allele frequency [MAF] <0.001) between patients and controls. To assess the frequency of rare variants in the control population, we evaluated the rare coding variants (MAF <0.001) found in the European cohort of the Exome Aggregation Database. We further evaluated plectin localization by immunofluorescence in a subset of patients with and without a PLEC variant.
Forty ARVC patients carried one or more rare PLEC variants (11%, 40/359). However, rare variants also seem to occur frequently in the control population (18%, 4754/26197 individuals). Nor did we find a difference in the prevalence of rare PLEC variants in ARVC patients with or without a desmosomal likely pathogenic/pathogenic variant (14% versus 8%, respectively). However, immunofluorescence analysis did show decreased plectin junctional localization in myocardial tissue from 5 ARVC patients with PLEC variants.
Although PLEC has been hypothesized as a promising candidate gene for ARVC, our current study did not show an enrichment of rare PLEC variants in ARVC patients compared to controls and therefore does not support a major role for PLEC in this disorder. Although rare PLEC variants were associated with abnormal localization in cardiac tissue, the confluence of data does not support a role for plectin abnormalities in ARVC development.
Journal Article
The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unreponsive to standard heart failure therapy
by
Eijgenraam, Tim R
,
van der Velden, Jolanda
,
Boukens, Bastiaan J
in
Animals
,
Calcium-Binding Proteins - genetics
,
Cardiomyopathies - complications
2020
Phospholamban (PLN) plays a role in cardiomyocyte calcium handling as primary inhibitor of sarco/endoplasmic reticulum Ca
-ATPase (SERCA). The p.(Arg14del) pathogenic variant in the PLN gene results in a high risk of developing dilated or arrhythmogenic cardiomyopathy with heart failure. There is no established treatment other than standard heart failure therapy or heart transplantation. In this study, we generated a novel mouse model with the PLN-R14del pathogenic variant, performed detailed phenotyping, and tested the efficacy of established heart failure therapies eplerenone or metoprolol. Heterozygous PLN-R14del mice demonstrated increased susceptibility to ex vivo induced arrhythmias, and cardiomyopathy at 18 months of age, which was not accelerated by isoproterenol infusion. Homozygous PLN-R14del mice exhibited an accelerated phenotype including cardiac dilatation, contractile dysfunction, decreased ECG potentials, high susceptibility to ex vivo induced arrhythmias, myocardial fibrosis, PLN protein aggregation, and early mortality. Neither eplerenone nor metoprolol administration improved cardiac function or survival. In conclusion, our novel PLN-R14del mouse model exhibits most features of human disease. Administration of standard heart failure therapy did not rescue the phenotype, underscoring the need for better understanding of the pathophysiology of PLN-R14del-associated cardiomyopathy. This model provides a great opportunity to study the pathophysiology, and to screen for potential therapeutic treatments.
Journal Article
A Systematic Analysis of the Clinical Outcome Associated with Multiple Reclassified Desmosomal Gene Variants in Arrhythmogenic Right Ventricular Cardiomyopathy Patients
by
Charron, Philippe
,
Yao, Yan
,
Sinagra, Gianfranco
in
Arrhythmias, Cardiac
,
Arrhythmogenic Right Ventricular Dysplasia - diagnosis
,
Arrhythmogenic Right Ventricular Dysplasia - genetics
2023
The presence of multiple pathogenic variants in desmosomal genes (
DSC2
,
DSG2
,
DSP
,
JUP
, and
PKP2
) in patients with arrhythmogenic right ventricular cardiomyopathy (ARVC) has been linked to a severe phenotype. However, the pathogenicity of variants is reclassified frequently, which may result in a changed clinical risk prediction. Here, we present the collection, reclassification, and clinical outcome correlation for the largest series of ARVC patients carrying multiple desmosomal pathogenic variants to date (
n
= 331). After reclassification, only 29% of patients remained carriers of two (likely) pathogenic variants. They reached the composite endpoint (ventricular arrhythmias, heart failure, and death) significantly earlier than patients with one or no remaining reclassified variant (hazard ratios of 1.9 and 1.8, respectively). Periodic reclassification of variants contributes to more accurate risk stratification and subsequent clinical management strategy.
Graphical Abstract
Journal Article
Author Correction: The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unresponsive to standard heart failure therapy
by
Eijgenraam, Tim R.
,
van de Kolk, Cees W. A.
,
van der Velden, Jolanda
in
Author
,
Author Correction
,
Humanities and Social Sciences
2020
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
Journal Article
The phospholamban p.(Arg14del) pathogenic variant leads to cardiomyopathy with heart failure and is unresponsive to standard heart failure therapy
by
Eijgenraam, Tim R.
,
van de Kolk, Cees W. A.
,
van der Velden, Jolanda
in
692/308
,
692/4019
,
Ca2+-transporting ATPase
2020
Phospholamban (PLN) plays a role in cardiomyocyte calcium handling as primary inhibitor of sarco/endoplasmic reticulum Ca
2+
-ATPase (SERCA). The p.(Arg14del) pathogenic variant in the
PLN
gene results in a high risk of developing dilated or arrhythmogenic cardiomyopathy with heart failure. There is no established treatment other than standard heart failure therapy or heart transplantation. In this study, we generated a novel mouse model with the PLN-R14del pathogenic variant, performed detailed phenotyping, and tested the efficacy of established heart failure therapies eplerenone or metoprolol. Heterozygous PLN-R14del mice demonstrated increased susceptibility to
ex vivo
induced arrhythmias, and cardiomyopathy at 18 months of age, which was not accelerated by isoproterenol infusion. Homozygous PLN-R14del mice exhibited an accelerated phenotype including cardiac dilatation, contractile dysfunction, decreased ECG potentials, high susceptibility to
ex vivo
induced arrhythmias, myocardial fibrosis, PLN protein aggregation, and early mortality. Neither eplerenone nor metoprolol administration improved cardiac function or survival. In conclusion, our novel PLN-R14del mouse model exhibits most features of human disease. Administration of standard heart failure therapy did not rescue the phenotype, underscoring the need for better understanding of the pathophysiology of PLN-R14del-associated cardiomyopathy. This model provides a great opportunity to study the pathophysiology, and to screen for potential therapeutic treatments.
Journal Article
No major role for rare plectin variants in arrhythmogenic right ventricular cardiomyopathy
by
Posafalvi, Anna
,
Boven, Ludolf G.
,
Wilde, Arthur A.
in
Care and treatment
,
Genetic variation
,
Heart cells
2018
Likely pathogenic/pathogenic variants in genes encoding desmosomal proteins play an important role in the pathophysiology of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, for a substantial proportion of ARVC patients, the genetic substrate remains unknown. We hypothesized that plectin, a cytolinker protein encoded by the PLEC gene, could play a role in ARVC because it has been proposed to link the desmosomal protein desmoplakin to the cytoskeleton and therefore has a potential function in the desmosomal structure. We screened PLEC in 359 ARVC patients and compared the frequency of rare coding PLEC variants (minor allele frequency [MAF] <0.001) between patients and controls. To assess the frequency of rare variants in the control population, we evaluated the rare coding variants (MAF <0.001) found in the European cohort of the Exome Aggregation Database. We further evaluated plectin localization by immunofluorescence in a subset of patients with and without a PLEC variant. Forty ARVC patients carried one or more rare PLEC variants (11%, 40/359). However, rare variants also seem to occur frequently in the control population (18%, 4754/26197 individuals). Nor did we find a difference in the prevalence of rare PLEC variants in ARVC patients with or without a desmosomal likely pathogenic/pathogenic variant (14% versus 8%, respectively). However, immunofluorescence analysis did show decreased plectin junctional localization in myocardial tissue from 5 ARVC patients with PLEC variants. Although PLEC has been hypothesized as a promising candidate gene for ARVC, our current study did not show an enrichment of rare PLEC variants in ARVC patients compared to controls and therefore does not support a major role for PLEC in this disorder. Although rare PLEC variants were associated with abnormal localization in cardiac tissue, the confluence of data does not support a role for plectin abnormalities in ARVC development.
Journal Article
No major role for rare plectin variants in arrhythmogenic right ventricular cardiomyopathy
by
Posafalvi, Anna
,
Boven, Ludolf G.
,
Wilde, Arthur A.
in
Care and treatment
,
Genetic variation
,
Heart cells
2018
Likely pathogenic/pathogenic variants in genes encoding desmosomal proteins play an important role in the pathophysiology of arrhythmogenic right ventricular cardiomyopathy (ARVC). However, for a substantial proportion of ARVC patients, the genetic substrate remains unknown. We hypothesized that plectin, a cytolinker protein encoded by the PLEC gene, could play a role in ARVC because it has been proposed to link the desmosomal protein desmoplakin to the cytoskeleton and therefore has a potential function in the desmosomal structure. We screened PLEC in 359 ARVC patients and compared the frequency of rare coding PLEC variants (minor allele frequency [MAF] <0.001) between patients and controls. To assess the frequency of rare variants in the control population, we evaluated the rare coding variants (MAF <0.001) found in the European cohort of the Exome Aggregation Database. We further evaluated plectin localization by immunofluorescence in a subset of patients with and without a PLEC variant. Forty ARVC patients carried one or more rare PLEC variants (11%, 40/359). However, rare variants also seem to occur frequently in the control population (18%, 4754/26197 individuals). Nor did we find a difference in the prevalence of rare PLEC variants in ARVC patients with or without a desmosomal likely pathogenic/pathogenic variant (14% versus 8%, respectively). However, immunofluorescence analysis did show decreased plectin junctional localization in myocardial tissue from 5 ARVC patients with PLEC variants. Although PLEC has been hypothesized as a promising candidate gene for ARVC, our current study did not show an enrichment of rare PLEC variants in ARVC patients compared to controls and therefore does not support a major role for PLEC in this disorder. Although rare PLEC variants were associated with abnormal localization in cardiac tissue, the confluence of data does not support a role for plectin abnormalities in ARVC development.
Journal Article
Improving the diagnostic yield of exome-sequencing, by predicting gene-phenotype associations using large-scale gene expression analysis
by
Karjalainen, Juha M
,
K Joeri Van Der Velde
,
Herkert, Johanna C
in
Diagnosis
,
Gene expression
,
Genetic screening
2018
Clinical interpretation of exome and genome sequencing data remains challenging and time consuming, with many variants with unknown effects found in genes with unknown functions. Automated prioritization of these variants can improve the speed of current diagnostics and identify previously unknown disease genes. Here, we used 31,499 RNA-seq samples to predict the phenotypic consequences of variants in genes. We developed GeneNetwork Assisted Diagnostic Optimization (GADO), a tool that uses these predictions in combination with a patient's phenotype, denoted using HPO terms, to prioritize identified variants and ease interpretation. GADO is unique because it does not rely on existing knowledge of a gene and can therefore prioritize variants missed by tools that rely on existing annotations or pathway membership. In a validation trial on patients with a known genetic diagnosis, GADO prioritized the causative gene within the top 3 for 41% of the cases. Applying GADO to a cohort of 38 patients without genetic diagnosis, yielded new candidate genes for seven cases. Our results highlight the added value of GADO (www.genenetwork.nl) for increasing diagnostic yield and for implicating previously unknown disease-causing genes. Footnotes * We have corrected a orcid that pointed to the wrong person.
Shared genetic pathways contribute to risk of hypertrophic and dilated cardiomyopathies with opposite directions of effect
by
Veldink, Jan H.
,
Sloane, Geraldine
,
van der Velden, Jolanda
in
45/43
,
59/57
,
631/208/205/2138
2021
The heart muscle diseases hypertrophic (HCM) and dilated (DCM) cardiomyopathies are leading causes of sudden death and heart failure in young, otherwise healthy, individuals. We conducted genome-wide association studies and multi-trait analyses in HCM (1,733 cases), DCM (5,521 cases) and nine left ventricular (LV) traits (19,260 UK Biobank participants with structurally normal hearts). We identified 16 loci associated with HCM, 13 with DCM and 23 with LV traits. We show strong genetic correlations between LV traits and cardiomyopathies, with opposing effects in HCM and DCM. Two-sample Mendelian randomization supports a causal association linking increased LV contractility with HCM risk. A polygenic risk score explains a significant portion of phenotypic variability in carriers of HCM-causing rare variants. Our findings thus provide evidence that polygenic risk score may account for variability in Mendelian diseases. More broadly, we provide insights into how genetic pathways may lead to distinct disorders through opposing genetic effects.
Genome-wide analyses identify multiple loci associated with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and left ventricular (LV) traits. Cardiomyopathies exhibit strong genetic correlations with LV traits, with opposing effects in HCM and DCM.
Journal Article