Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
4 result(s) for "Hoque, Tania Tanzin"
Sort by:
Characterization, Performance, and Efficiency Analysis of Hybrid Photovoltaic Thermal (PVT) Systems
Hybrid PVT systems simultaneously produce electrical energy using photovoltaic technology and thermal energy using a heat extraction method that collects induced heat from the module. The purpose of this work is to establish a PVT system based on characterization, efficiency study, and performance analysis for both an electrical and a thermal system. A mathematical analysis of the electrical, thermal, and optical model is performed to establish the proposed system. Three types of heat exchanger pipes, including stainless steel, aluminum, and copper, are considered for a heat transfer analysis of the system. The results include temperature profiling, a comparison of the PVT system’s different components, and an overall output and efficiency study for all of the mentioned pipes. Results show that the obtained electrical and thermal efficiency for stainless steel is 0.1653 and 0.237, respectively, for aluminum it is 0.16515 and 0.2401, respectively, and for copper it is 0.16564 and 0.24679, respectively. After comparison, it was found that the overall efficiency for stainless steel is 0.40234, for aluminum is 0.40526, and for copper is 0.41244. Thus, this study will enhance the opportunity to provide an effective hybrid PVT energy management system.
Mathematical Modeling, Parameters Effect, and Sensitivity Analysis of a Hybrid PVT System
Hybrid PVT solar systems offer an innovative approach that allows solar energy to be used to simultaneously generate thermal and electrical energy. It is still a challenge to develop an energy-efficient hybrid PVT system. The aim of this work is to develop a mathematical model, investigate the system’s performance based on parameters, include sensitivity analysis in the upper layer mainly photovoltaic part, and provide an efficient and innovative system. Performance analysis of the hybrid system is obtained by establishing a mathematical model and efficiency analysis. The electrical model and thermal model of the hybrid system is also obtained by appropriate and complete mathematical modeling. It establishes a good connection of the system in the context of electrical analysis and power generation. The parameters variation impact and sensitivity analysis of the most important parameters, namely, irradiance, ambient temperature, panel temperature, wind speed, and humidity in the PV panel section, are also obtained using a MATLAB model. The results show the effective increase or decrease in the electrical power and sensitiveness in the output of the system due to this modification. Related MPP values as a result of these parameters variation and their impact on the overall output of the hybrid PVT system are also analyzed.
A Context Aware Recommender System for Tourism with Ambient Intelligence
Recommender system (RS) holds a significant place in the area of the tourism sector. The major factor of trip planning is selecting relevant Points of Interest (PoI) from tourism domain. The RS system supposed to collect information from user behaviors, personality, preferences and other contextual information. This work is mainly focused on user’s personality, preferences and analyzing user psychological traits. The work is intended to improve the user profile modeling, exposing relationship between user personality and PoI categories and find the solution in constraint satisfaction programming (CSP). It is proposed the architecture according to ambient intelligence perspective to allow the best possible tourist place to the end-user. The key development of this RS is representing the model in CSP and optimizing the problem. We implemented our system in Minizinc solver with domain restrictions represented by user preferences. The CSP allowed user preferences to guide the system toward finding the optimal solutions; RESUMO O sistema de recomendação (RS) detém um lugar significativo na área do sector do turismo. O principal fator do planeamento de viagens é selecionar pontos de interesse relevantes (PoI) do domínio do turismo.
Theroute Platform: Customized Tourist Routes in the North Region of Portugal
The aim of the project TheRoute is to generate automatic routes for tourists and visitors to Points of Interest (POI) related to Tourism, Heritage, Arts and Culture. The platform developed in Porto creates customized routes in the North region of Portugal. The suggested routes are fit for the profile and personality of tourist and also for groups of tourists. The project also considers the aspects related to mobility (public transportation availability), health, well-being and accessibility. The system is accessible by computer, tablet and smart phone environment, covering the life cycle of the tourist experience. TheRoute has been developed considering the notion of Ambient Intelligence (AmI) and Context Awareness. This paper focuses on the proposed architecture, highlights the interface of the mobile platform, the modelling process of POI and Thematic Tourist Tours.