Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
14 result(s) for "Horsfall, Dave"
Sort by:
Know Your Customer: Balancing innovation and regulation for financial inclusion
Financial inclusion depends on providing adjusted services for citizens with disclosed vulnerabilities. At the same time, the financial industry needs to adhere to a strict regulatory framework, which is often in conflict with the desire for inclusive, adaptive, and privacy-preserving services. In this article we study how this tension impacts the deployment of privacy-sensitive technologies aimed at financial inclusion. We conduct a qualitative study with banking experts to understand their perspectives on service development for financial inclusion. We build and demonstrate a prototype solution based on open source decentralized identifiers and verifiable credentials software and report on feedback from the banking experts on this system. The technology is promising thanks to its selective disclosure of vulnerabilities to the full control of the individual. This supports GDPR requirements, but at the same time, there is a clear tension between introducing these technologies and fulfilling other regulatory requirements, particularly with respect to “Know Your Customer.” We consider the policy implications stemming from these tensions and provide guidelines for the further design of related technologies.
Blood and immune development in human fetal bone marrow and Down syndrome
Haematopoiesis in the bone marrow (BM) maintains blood and immune cell production throughout postnatal life. Haematopoiesis first emerges in human BM at 11–12 weeks after conception 1 , 2 , yet almost nothing is known about how fetal BM (FBM) evolves to meet the highly specialized needs of the fetus and newborn. Here we detail the development of FBM, including stroma, using multi-omic assessment of mRNA and multiplexed protein epitope expression. We find that the full blood and immune cell repertoire is established in FBM in a short time window of 6–7 weeks early in the second trimester. FBM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell subsets emerging for the first time. The substantial expansion of B lymphocytes in FBM contrasts with fetal liver at the same gestational age. Haematopoietic progenitors from fetal liver, FBM and cord blood exhibit transcriptional and functional differences that contribute to tissue-specific identity and cellular diversification. Endothelial cell types form distinct vascular structures that we show are regionally compartmentalized within FBM. Finally, we reveal selective disruption of B lymphocyte, erythroid and myeloid development owing to a cell-intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in Down syndrome (trisomy 21). A single-cell atlas of human fetal bone marrow in healthy fetuses and fetuses with Down syndrome provides insight into developmental haematopoiesis in humans and the transcription and functional differences that occur in Down syndrome.
Single-cell atlas of human liver development reveals pathways directing hepatic cell fates
The liver has been studied extensively due to the broad number of diseases affecting its vital functions. However, therapeutic advances have been hampered by the lack of knowledge concerning human hepatic development. Here, we addressed this limitation by describing the developmental trajectories of different cell types that make up the human liver at single-cell resolution. These transcriptomic analyses revealed that sequential cell-to-cell interactions direct functional maturation of hepatocytes, with non-parenchymal cells playing essential roles during organogenesis. We utilized this information to derive bipotential hepatoblast organoids and then exploited this model system to validate the importance of signalling pathways in hepatocyte and cholangiocyte specification. Further insights into hepatic maturation also enabled the identification of stage-specific transcription factors to improve the functionality of hepatocyte-like cells generated from human pluripotent stem cells. Thus, our study establishes a platform to investigate the basic mechanisms directing human liver development and to produce cell types for clinical applications. Wesley et al. describe the developmental trajectories of human foetal liver cell types at single-cell resolution and generate bipotential hepatoblast organoids, which can serve as a new platform to investigate human liver development.
OME-Zarr: a cloud-optimized bioimaging file format with international community support
A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself—OME-Zarr—along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain—the file format that underlies so many personal, institutional, and global data management and analysis tasks.
Know Your Customer: Balancing Innovation and Regulation for Financial Inclusion
Financial inclusion depends on providing adjusted services for citizens with disclosed vulnerabilities. At the same time, the financial industry needs to adhere to a strict regulatory framework, which is often in conflict with the desire for inclusive, adaptive, and privacy-preserving services. In this article we study how this tension impacts the deployment of privacy-sensitive technologies aimed at financial inclusion. We conduct a qualitative study with banking experts to understand their perspectives on service development for financial inclusion. We build and demonstrate a prototype solution based on open source decentralized identifiers and verifiable credentials software and report on feedback from the banking experts on this system. The technology is promising thanks to its selective disclosure of vulnerabilities to the full control of the individual. This supports GDPR requirements, but at the same time, there is a clear tension between introducing these technologies and fulfilling other regulatory requirements, particularly with respect to 'Know Your Customer.' We consider the policy implications stemming from these tensions and provide guidelines for the further design of related technologies.
OME-Zarr: a cloud-optimized bioimaging file format with international community support
A growing community is constructing a next-generation file format (NGFF) for bioimaging to overcome problems of scalability and heterogeneity. Organized by the Open Microscopy Environment (OME), individuals and institutes across diverse modalities facing these problems have designed a format specification process (OME-NGFF) to address these needs. This paper brings together a wide range of those community members to describe the cloud-optimized format itself -- OME-Zarr -- along with tools and data resources available today to increase FAIR access and remove barriers in the scientific process. The current momentum offers an opportunity to unify a key component of the bioimaging domain -- the file format that underlies so many personal, institutional, and global data management and analysis tasks.
Identifying and Supporting Financially Vulnerable Consumers in a Privacy-Preserving Manner: A Use Case Using Decentralised Identifiers and Verifiable Credentials
Vulnerable individuals have a limited ability to make reasonable financial decisions and choices and, thus, the level of care that is appropriate to be provided to them by financial institutions may be different from that required for other consumers. Therefore, identifying vulnerability is of central importance for the design and effective provision of financial services and products. However, validating the information that customers share and respecting their privacy are both particularly important in finance and this poses a challenge for identifying and caring for vulnerable populations. This position paper examines the potential of the combination of two emerging technologies, Decentralized Identifiers (DIDs) and Verifiable Credentials (VCs), for the identification of vulnerable consumers in finance in an efficient and privacy-preserving manner.
In Private, Secure, Conversational FinBots We Trust
In the past decade, the financial industry has experienced a technology revolution. While we witness a rapid introduction of conversational bots for financial services, there is a lack of understanding of conversational user interfaces (CUI) features in this domain. The finance industry also deals with highly sensitive information and monetary transactions, presenting a challenge for developers and financial providers. Through a study on how to design text-based conversational financial interfaces with N=410 participants, we outline user requirements of trustworthy CUI design for financial bots. We posit that, in the context of Finance, bot privacy and security assurances outweigh conversational capability and postulate implications of these findings. This work acts as a resource on how to design trustworthy FinBots and demonstrates how automated financial advisors can be transformed into trusted everyday devices, capable of supporting users' daily financial activities.
Multi-organ functions of yolk sac during human early development
The yolk sac (YS) represents an evolutionarily-conserved extraembryonic structure that ensures timely delivery of nutritional support and oxygen to the developing embryo. However, the YS remains ill-defined in humans. We therefore assemble a complete single cell 3D map of human YS from 3-8 post conception weeks by integrating multiomic protein and gene expression data. We reveal the YS as a site of primitive and definitive haematopoiesis including a YS-specific accelerated route to macrophage production, a source of nutritional/metabolic support and a regulator of oxygen-carrying capacity. We reconstruct the emergence of primitive haematopoietic stem and progenitor cells from YS hemogenic endothelium and their decline upon stromal support modulation as intraembryonic organs specialise to assume these functions. The YS therefore functions as ‘three organs in one’ revealing a multifaceted relay of vital organismal functions as pregnancy proceeds. Human yolk sac is a key staging post in a relay of vital organismal functions during human pregnancy.
Intrinsic and extrinsic regulation of human fetal bone marrow haematopoiesis and perturbations in Down syndrome
Throughout postnatal life, haematopoiesis in the bone marrow (BM) maintains blood and immune cell production. Haematopoiesis first emerges in human BM at 12 post conception weeks while fetal liver (FL) haematopoiesis is still expanding. Yet, almost nothing is known about how fetal BM evolves to meet the highly specialised needs of the fetus and newborn infant. Here, we detail the development of fetal BM including stroma using single cell RNA-sequencing. We find that the full blood and immune cell repertoire is established in fetal BM in a short time window of 6-7 weeks early in the second trimester. Fetal BM promotes rapid and extensive diversification of myeloid cells, with granulocytes, eosinophils and dendritic cell (DC) subsets emerging for the first time. B-lymphocyte expansion occurs, in contrast with erythroid predominance in FL at the same gestational age. We identify transcriptional and functional differences that underlie tissue-specific identity and cellular diversification in fetal BM and FL. Finally, we reveal selective disruption of B-lymphocyte, erythroid and myeloid development due to cell intrinsic differentiation bias as well as extrinsic regulation through an altered microenvironment in the fetal BM from constitutional chromosome anomaly Down syndrome during this crucial developmental time window.