Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Hoursanov, Andrey"
Sort by:
Neutral atom quantum computing hardware: performance and end-user perspective
We present an industrial end-user perspective on the current state of quantum computing hardware for one specific technological approach, the neutral atom platform. Our aim is to assist developers in understanding the impact of the specific properties of these devices on the effectiveness of algorithm execution. Based on discussions with different vendors and recent literature, we discuss the performance data of the neutral atom platform. Specifically, we focus on the physical qubit architecture, which affects state preparation, qubit-to-qubit connectivity, gate fidelities, native gate instruction set, and individual qubit stability. These factors determine both the quantum-part execution time and the end-to-end wall clock time relevant for end-users, but also the ability to perform fault-tolerant quantum computation in the future. We end with an overview of which applications have been shown to be well suited for the peculiar properties of neutral atom-based quantum computers.
Neutral Atom Quantum Computing Hardware: Performance and End-User Perspective
We present an industrial end-user perspective on the current state of quantum computing hardware for one specific technological approach, the neutral atom platform. Our aim is to assist developers in understanding the impact of the specific properties of these devices on the effectiveness of algorithm execution. Based on discussions with different vendors and recent literature, we discuss the performance data of the neutral atom platform. Specifically, we focus on the physical qubit architecture, which affects state preparation, qubit-to-qubit connectivity, gate fidelities, native gate instruction set, and individual qubit stability. These factors determine both the quantum-part execution time and the end-to-end wall clock time relevant for end-users, but also the ability to perform fault-tolerant quantum computation in the future. We end with an overview of which applications have been shown to be well suited for the peculiar properties of neutral atom-based quantum computers.
Ion-Based Quantum Computing Hardware: Performance and End-User Perspective
This is the second paper in a series of papers providing an overview of different quantum computing hardware platforms from an industrial end-user perspective. It follows our first paper on neutral-atom quantum computing. In the present paper, we provide a survey on the current state-of-the-art in trapped-ion quantum computing, taking up again the perspective of an industrial end-user. To this end, our paper covers, on the one hand, a comprehensive introduction to the physical foundations and mechanisms that play an important role in operating a trapped-ion quantum computer. On the other hand, we provide an overview of the key performance metrics that best describe and characterise such a device's current computing capability. These metrics encompass performance indicators such as qubit numbers, gate times and errors, native gate sets, qubit stability and scalability as well as considerations regarding the general qubit types and trap architectures. In order to ensure that these metrics reflect the current state of trapped-ion quantum computing as accurate as possible, they have been obtained by both an extensive review of recent literature and, more importantly, from discussions with various quantum hardware vendors in the field. We combine these factors and provide - again from an industrial end-user perspective - an overview of what is currently possible with trapped-ion quantum computers, which algorithms and problems are especially suitable for this platform, what are the relevant end-to-end wall clock times for calculations, and what might be possible with future fault-tolerant trapped-ion quantum computers.