Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Hover, Laura D."
Sort by:
Deep multiomics profiling of brain tumors identifies signaling networks downstream of cancer driver genes
2019
High throughput omics approaches provide an unprecedented opportunity for dissecting molecular mechanisms in cancer biology. Here we present deep profiling of whole proteome, phosphoproteome and transcriptome in two high-grade glioma (HGG) mouse models driven by mutated RTK oncogenes,
PDGFRA
and
NTRK1
, analyzing 13,860 proteins and 30,431 phosphosites by mass spectrometry. Systems biology approaches identify numerous master regulators, including 41 kinases and 23 transcription factors. Pathway activity computation and mouse survival indicate the
NTRK1
mutation induces a higher activation of AKT downstream targets including MYC and JUN, drives a positive feedback loop to up-regulate multiple other RTKs, and confers higher oncogenic potency than the
PDGFRA
mutation. A mini-gRNA library CRISPR-Cas9 validation screening shows 56% of tested master regulators are important for the viability of
NTRK
-driven HGG cells, including TFs (Myc and Jun) and metabolic kinases (AMPK
a
1 and AMPK
a
2), confirming the validity of the multiomics integrative approaches, and providing novel tumor vulnerabilities.
Multi-omic profiling is a powerful approach to dissecting molecular mechanisms in disease. Here the authors generate whole proteome, phosphoproteome and transcriptome profiles from two mouse models of high-grade glioma driven by different oncogenes, and validate identified master regulators with a CRISPR screen.
Journal Article
BMPR2 loss in fibroblasts promotes mammary carcinoma metastasis via increased inflammation
by
Moses, Harold L.
,
Polikowsky, Eleanor R.
,
Chytil, Anna
in
Animals
,
Bone morphogenetic protein receptor type II
,
Bone Morphogenetic Protein Receptors, Type II - genetics
2015
Bone Morphogenetic Protein (BMP) receptors mediate a diverse range of signals to regulate both development and disease. BMP activity has been linked to both tumor promoting and suppressive functions in both tumor cells and their surrounding microenvironment. We sought to investigate the requirement for BMPR2 in stromal fibroblasts during mammary tumor formation and metastasis. We utilized FSP1 (Fibroblast Specific Protein-1) promoter driven Cre to genetically delete BMPR2 in mice expressing the MMTV.PyVmT mammary carcinoma oncogene. We found that abrogation of stromal BMPR2 expression via FSP1 driven Cre resulted in increased tumor metastasis. Additionally, similar to epithelial BMPR2 abrogation, stromal loss of BMPR2 results in increased inflammatory cell infiltration. We proceeded to isolate and establish fibroblast cell lines without BMPR2 and found a cell autonomous increase in inflammatory cytokine secretion. Fibroblasts were co-implanted with syngeneic tumor cells and resulted in accelerated tumor growth and increased metastasis when fibroblasts lacked BMPR2. We observed that the loss of BMPR2 results in increased chemokine expression, which facilitates inflammation by a sustained increase in myeloid cells. The chemokines increased in BMPR2 deleted cells correlated with poor outcome in human breast cancer patients. We conclude that BMPR2 has tumor suppressive functions in the stroma by regulating inflammation.
•Stromal deletion of BMPR2 increases metastasis in a breast cancer mouse model.•Fibroblasts with deletion of BMPR2 have elevated cytokines and chemokines.•BMPR2 KO fibroblasts promote breast cancer metastasis and myeloid cell infiltration.•Chemokines from BMPR2 deleted fibroblasts correlate with invasive breast cancer.
Journal Article
Genomic Analysis of the BMP Family in Glioblastomas
by
Ty W. Abel
,
Laura D. Hover
,
Philip Owens
in
Bone morphogenetic proteins
,
Development and progression
,
Genetic aspects
2015
Glioblastoma multiforme (GBM) is a grade IV glioma with a median survival of 15 months. Recently, bone morphogenetic protein (BMP) signaling has been shown to promote survival in xenograft murine models. To gain a better understanding of the role of BMP signaling in human GBMs, we examined the genomic alterations of 90 genes associated with BMP signaling in GBM patient samples. We completed this analysis using publically available datasets compiled through Te Cancer Genome Atlas and the Glioma Molecular Diagnostic Initiative. Here we show how mRNA expression is altered in GBM samples and how that is associated with patient survival, highlighting both known and novel associations between BMP signaling and GBM biology.
Journal Article
Patient-derived models recapitulate heterogeneity of molecular signatures and drug response in pediatric high-grade glioma
by
Mercer, Kimberly S.
,
Dunphy, Paige S.
,
Twarog, Nathaniel
in
1-Phosphatidylinositol 3-kinase
,
13/106
,
38/39
2021
Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. Here we report establishment of 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulate histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and include rare subgroups not well-represented by existing models. We deploy 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predict variable in vivo response to PI3K/mTOR and MEK pathway inhibitors. These unique new models and an online interactive data portal for exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research.
Patient-derived xenografts provide a resource for basic and translational cancer research. Here, the authors generate multiple pediatric high-grade glioma xenografts, use omics technologies to show that they are representative of primary tumours and use them to assess therapeutic response.
Journal Article
Patient-Derived Orthotopic Xenografts and Cell Lines from Pediatric High-Grade Glioma Recapitulate the Heterogeneity of Histopathology, Molecular Signatures, and Drug Response
by
Roussel, Martine F
,
Twarog, Nathaniel
,
Shelat, Anang A
in
1-Phosphatidylinositol 3-kinase
,
Brain cancer
,
Brain tumors
2020
Abstract Pediatric high-grade glioma (pHGG) is a major contributor to cancer-related death in children. In vitro and in vivo disease models reflecting the intimate connection between developmental context and pathogenesis of pHGG are essential to advance understanding and identify therapeutic vulnerabilities. We established 21 patient-derived pHGG orthotopic xenograft (PDOX) models and eight matched cell lines from diverse groups of pHGG. These models recapitulated histopathology, DNA methylation signatures, mutations and gene expression patterns of the patient tumors from which they were derived, and included rare subgroups not well-represented by existing models. We deployed 16 new and existing cell lines for high-throughput screening (HTS). In vitro HTS results predicted variable in vivo response to inhibitors of PI3K/mTOR and MEK signaling pathways. These unique new models and an online interactive data portal to enable exploration of associated detailed molecular characterization and HTS chemical sensitivity data provide a rich resource for pediatric brain tumor research. Competing Interest Statement The authors have declared no competing interest. Footnotes * https://pbtp.stjude.cloud