Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
76 result(s) for "Howells, Emily"
Sort by:
Biannual Spawning and Temporal Reproductive Isolation in Acropora Corals
Coral spawning on the oceanic reef systems of north-western Australia was recently discovered during autumn and spring, but the degree to which species and particularly colonies participated in one or both of these spawnings was unknown. At the largest of the oceanic reef systems, the participation by colonies in the two discrete spawning events was investigated over three years in 13 species of Acropora corals (n = 1,855 colonies). Seven species spawned during both seasons; five only in autumn and one only in spring. The majority of tagged colonies (n = 218) spawned once a year in the same season, but five colonies from three species spawned during spring and autumn during a single year. Reproductive seasonality was not influenced by spatial variation in habitat conditions, or by Symbiodinium partners in the biannual spawner Acropora tenuis. Colonies of A. tenuis spawning during different seasons separated into two distinct yet cryptic groups, in a bayesian clustering analysis based on multiple microsatellite markers. These groups were associated with a major genetic divergence (G\"ST = 0.469), despite evidence of mixed ancestry in a small proportion of individuals. Our results confirm that temporal reproductive isolation is a common feature of Acropora populations at Scott Reef and indicate that spawning season is a genetically determined trait in at least A. tenuis. This reproductive isolation may be punctuated occasionally by interbreeding between genetic groups following favourable environmental conditions, when autumn spawners undergo a second annual gametogenic cycle and spawn during spring.
Intergenerational epigenetic inheritance in reef-building corals
The perception that the inheritance of phenotypic traits operates solely through genetic means is slowly being eroded: epigenetic mechanisms have been shown to induce heritable changes in gene activity in plants1,2 and metazoans1,3. Inheritance of DNA methylation patterns provides a potential pathway for environmentally induced phenotypes to contribute to evolution of species and populations1–5. However, in basal metazoans, it is unknown whether inheritance of CpG methylation patterns occurs across the genome (as in plants) or as rare exceptions (as in mammals)4. Here, we show that DNA methylation patterns in a reef-building coral are determined by genotype and developmental stage, as well as by parental environment. Transmission of CpG methylation from adults to their sperm and larvae demonstrates genome-wide inheritance. Variation in the hypermethylation of genes in adults and their sperm from distinct environments suggests intergenerational acclimatization to local temperature and salinity. Furthermore, genotype-independent adjustments of methylation levels in stress-related genes were strongly correlated with offspring survival rates under heat stress. These findings support a role of DNA methylation in the intergenerational inheritance of traits in corals, which could extend to enhancing their capacity to adapt to climate change.Intergenerational inheritance of traits in corals can help species survive environmental change. Examination of intergenerational DNA methylation profiles in a reef-building coral shows there to be genome-wide inheritance, with the potential for adaptive capacity to environmental stressors.
Historical thermal regimes define limits to coral acclimatization
Knowledge of the degree to which corals undergo physiological acclimatization or genetic adaptation in response to changes in their thermal environment is crucial to the success of coral reef conservation strategies. The potential of corals to acclimatize to temperatures exceeding historical thermal regimes was investigated by reciprocal transplantation of Acropora millepora colonies between the warm central and cool southern regions of the Great Barrier Reef (GBR) for a duration of 14 months. Colony fragments retained at native sites remained healthy, whereas transplanted fragments, although healthy over initial months when temperatures remained within native thermal regimes, subsequently bleached and suffered mortality during seasonal temperature extremes. Corals hosting Symbiodinium D transplanted to the southern GBR bleached in winter and the majority suffered whole (40%; n = 20 colonies) or partial (50%) mortality at temperatures 1.1°C below their 15-year native minimum. In contrast, corals hosting Symbiodinium C2 transplanted to the central GBR bleached in summer and suffered whole (50%; n = 10 colonies) or partial (42%) mortality at temperatures 2.5°C above their 15-year native maximum. During summer bleaching, the dominant Symbiodinium type changed from C2 to D within corals transplanted to the central GBR. Corals transplanted to the cooler, southern GBR grew 74-80% slower than corals at their native site, and only 50% of surviving colonies reproduced, at least partially because of cold water bleaching of transplants. Despite the absence of any visual signs of stress, corals transplanted to the warmer, central GBR grew 52-59% more slowly than corals at their native site before the summer bleaching (i.e., from autumn to spring). Allocation of energy to initial acclimatization or reproduction may explain this pattern, as the majority (65%) of transplants reproduced one month earlier than portions of the same colonies retained at the southern native site. All parameters investigated (bleaching, mortality, Symbiodinium type fidelity, reproductive timing) demonstrated strong interactions between genotype and environment, indicating that the acclimatization potential of A. millepora populations may be limited by adaptation of the holobiont to native thermal regimes.
Mapping the future for coral reefs
The ability of corals to adapt to global warming may involve trade-offs among the traits that influence their success as the foundational species of coral reefs.The ability of corals to adapt to global warming may involve trade-offs among the traits that influence their success as the foundational species of coral reefs.
Localized outbreaks of coral disease on Arabian reefs are linked to extreme temperatures and environmental stressors
The Arabian Peninsula borders the hottest reefs in the world, and corals living in these extreme environments can provide insight into the effects of warming on coral health and disease. Here, we examined coral reef health at 17 sites across three regions along the northeastern Arabian Peninsula (Persian Gulf, Strait of Hormuz and Oman Sea) representing a gradient of environmental conditions. The Persian Gulf has extreme seasonal fluctuations in temperature and chronic hypersalinity, whereas the other two regions experience more moderate conditions. Field surveys identified 13 coral diseases including tissue loss diseases of unknown etiology (white syndromes) in Porites, Platygyra, Dipsastraea, Cyphastrea, Acropora and Goniopora; growth anomalies in Porites, Platygyra and Dipsastraea; black band disease in Platygyra, Dipsastraea, Acropora, Echinopora and Pavona; bleached patches in Porites and Goniopora and a disease unique to this region, yellow-banded tissue loss in Porites. The most widespread diseases were Platygyra growth anomalies (52.9% of all surveys), Acropora white syndrome (47.1%) and Porites bleached patches (35.3%). We found a number of diseases not yet reported in this region and found differential disease susceptibility among coral taxa. Disease prevalence was higher on reefs within the Persian Gulf (avg. 2.05%) as compared to reefs within the Strait of Hormuz (0.46%) or Oman Sea (0.25%). A high number of localized disease outbreaks (8 of 17 sites) were found, especially within the Persian Gulf (5 of 8 sites). Across all regions, the majority of variation in disease prevalence (82.2%) was associated with the extreme temperature range experienced by these corals combined with measures of organic pollution and proximity to shore. Thermal stress is known to drive a number of coral diseases, and thus, this region provides a platform to study disease at the edge of corals’ thermal range.
Factors Limiting the Range Extension of Corals into High-Latitude Reef Regions
Reef-building corals show a marked decrease in total species richness from the tropics to high latitude regions. Several hypotheses have been proposed to account for this pattern in the context of abiotic and biotic factors, including temperature thresholds, light limitation, aragonite saturation, nutrient or sediment loads, larval dispersal constraints, competition with macro-algae or other invertebrates, and availability of suitable settlement cues or micro-algal symbionts. Surprisingly, there is a paucity of data supporting several of these hypotheses. Given the immense pressures faced by corals in the Anthropocene, it is critical to understand the factors limiting their distribution in order to predict potential range expansions and the role that high latitude reefs can play as refuges from climate change. This review examines these factors and outlines critical research areas to address knowledge gaps in our understanding of light/temperature interactions, coral-Symbiodiniaceae associations, settlement cues, and competition in high latitude reefs.
Heat tolerance varies considerably within a reef-building coral species on the Great Barrier Reef
Reef-building coral populations face unprecedented threats from climate warming. Standing variation in heat tolerance is crucial for evolutionary processes necessary for corals to persist. Yet, the spatial distribution of heat-tolerant corals and the underlying factors that determine heat tolerance are poorly understood from individual to ecosystem scales. Here, we show extensive variation in the heat tolerance of a foundational coral species complex across the Great Barrier Reef. Thermal thresholds of 569 individuals differed by up to 7.3 °C across scales from meters to >1250 km. Variation in thresholds among reefs was consistent with local adaptation and acclimatization to historical and recent thermal history. However, variation within reefs was sometimes greater than among reefs and largely unexplained by environmental predictors, putative host species, or symbiont communities. This indicates that within-reef heat tolerance differences may be informed primarily by other factors, such as adaptive genomic variation. We anticipate our findings will inform conservation and restoration actions, including targeting individuals for selective breeding of enhanced heat tolerance.Adaptation to thermal histories governs differences in coral heat tolerance between reefs, whereas within reefs, variations in heat tolerance cannot be explained by environmental predictors and may instead be a result of genomic variations, suggesting analyses of coral samples from the Great Barrier Reef.
Widespread bleaching in the One Tree Island lagoon (Southern Great Barrier Reef) during record-breaking temperatures in 2020
The global marine environment has been impacted significantly by climate change. Ocean temperatures are rising, and the frequency, duration and intensity of marine heatwaves are increasing, particularly affecting coral reefs. Coral bleaching events are becoming more common, with less recovery time between events. Anomalous temperatures at the start of 2020 caused widespread bleaching across the Great Barrier Reef (GBR), extending to southern, previously less affected reefs such as One Tree Island. Here, nine video transects were conducted at One Tree Island, in the Capricorn Bunker Group, and analysed for community composition and diversity, and the extent of bleaching across taxa. Average live hard coral cover across the area was 11.62%, and almost half of this was identified as severely bleached. This bleaching event is concerning as it occurred in an area previously considered a potential refuge for corals and associated fauna from the risks of climate warming. Due to the global impacts of COVID-19 during 2020, this report provides one of potentially few monitoring efforts of coral bleaching.
Harnessing Multiscale Topographic Environmental Variables for Regional Coral Species Distribution Models
Effective biodiversity conservation requires knowledge of species' distributions across large areas, yet prevalence data for marine sessile species is scarce, with traditional variables often unavailable at appropriate temporal and spatial resolutions. As marine organism distributions generally depend on terrain heterogeneity, topographic variables derived from digital elevation models (DEMs) can be useful proxies in ecological modelling, given appropriate spatial resolutions. Here, we use three reef‐building Acropora coral species across the Great Barrier Reef, Australia, in a case study to (1) assess high‐resolution bathymetry DEM sources for accuracy, (2) harness their derived topographic variables for regional coral species distribution models (SDMs), and (3) develop a transferable framework to produce, select and integrate multi‐resolution variables into marine spatial models. For this, we obtained and processed three distinct bathymetric digital depth models that we treat as DEMs, which are available across the GBR extent: (i) Allen Coral Atlas (ACA) at 10 m, (ii) DeepReef at 30 m and (iii) DeepReef at 100 m. We generalised the three DEMs to multiple nested spatial resolutions (15 m–120 m) and derived the same eight topographic variables to assess SDM sensitivity to bathymetry source and spatial resolution. The ACA and DeepReef DEMs shared similar vertical accuracies, each producing topographic variables relevant to marine SDMs. Slope and vector ruggedness measure (VRM), capturing hydrodynamic movement and shelter or exposure, were the most relevant variables in SDMs of all three species. Interestingly, variables at the finest resolution (15 m) were not always the most relevant for producing accurate coral SDMs, with optimal resolutions between 15 and 60 m depending on the variable type and species. Using multi‐resolution topographic variables in SDMs provided nuanced insights into the multiscale drivers of regional coral distributions. Drawing from this case study, we provide a practical and transferable framework to facilitate the adoption of multiscale SDMs for better‐informed conservation and management planning. We investigate the application of multiscale topographic variables obtained from freely available bathymetric digital elevation models (DEMs) for ecological modelling in seascape environments. Using a case study of three Acropora coral species in the Great Barrier Reef, we demonstrate that various spatial resolutions can effectively model coral distributions, thus allowing us to identify the key topographic variables in these models. Integrating multiscale frameworks into generating environmental predictor variables has the potential to improve ecological models, supporting the development of robust and effective marine conservation and management planning.
Recent Advances in Understanding the Effects of Climate Change on Coral Reefs
Climate change is one of the greatest threats to the persistence of coral reefs. Sustained and ongoing increases in ocean temperatures and acidification are altering the structure and function of reefs globally. Here, we summarise recent advances in our understanding of the effects of climate change on scleractinian corals and reef fish. Although there is considerable among-species variability in responses to increasing temperature and seawater chemistry, changing temperature regimes are likely to have the greatest influence on the structure of coral and fish assemblages, at least over short–medium timeframes. Recent evidence of increases in coral bleaching thresholds, local genetic adaptation and inheritance of heat tolerance suggest that coral populations may have some capacity to respond to warming, although the extent to which these changes can keep pace with changing environmental conditions is unknown. For coral reef fishes, current evidence indicates increasing seawater temperature will be a major determinant of future assemblages, through both habitat degradation and direct effects on physiology and behaviour. The effects of climate change are, however, being compounded by a range of anthropogenic disturbances, which may undermine the capacity of coral reef organisms to acclimate and/or adapt to specific changes in environmental conditions.