Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
9 result(s) for "Howick, Andrew"
Sort by:
The Malaria Cell Atlas
Several species of the parasite Plasmodium cause human malarial diseases, and, despite determined control efforts, a huge global disease burden remains. Howick et al. present a single-cell analysis of transcription across the malaria parasite life cycle (see the Perspective by Winzeler). Single-cell transcriptomes generated from 10 different life-cycle stages of the rodent-model malaria parasite P. berghei identified 20 “modules” among 5156 core transcriptome genes. These clusters enabled functional assignment of hypothetical and conserved genes, and they hint at further substructure of established life-cycle stages. The atlas also allowed for P. falciparum and P. malariae transcriptomes from patient isolates to be deconvoluted and for classification of parasitemia according to developmental stage. Science , this issue p. eaaw2619 ; see also p. 753 Single-cell methods allow precise developmental timing across the life cycles of several malaria parasite species. Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire Plasmodium berghei life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites.
TIDieR-Placebo: A guide and checklist for reporting placebo and sham controls
Placebo or sham controls are the standard against which the benefits and harms of many active interventions are measured. Whilst the components and the method of their delivery have been shown to affect study outcomes, placebo and sham controls are rarely reported and often not matched to those of the active comparator. This can influence how beneficial or harmful the active intervention appears to be. Without adequate descriptions of placebo or sham controls, it is difficult to interpret results about the benefits and harms of active interventions within placebo-controlled trials. To overcome this problem, we developed a checklist and guide for reporting placebo or sham interventions. We developed an initial list of items for the checklist by surveying experts in placebo research (n = 14). Because of the diverse contexts in which placebo or sham treatments are used in clinical research, we consulted experts in trials of drugs, surgery, physiotherapy, acupuncture, and psychological interventions. We then used a multistage online Delphi process with 53 participants to determine which items were deemed to be essential. We next convened a group of experts and stakeholders (n = 16). Our main output was a modification of the existing Template for Intervention Description and Replication (TIDieR) checklist; this allows the key features of both active interventions and placebo or sham controls to be concisely summarised by researchers. The main differences between TIDieR-Placebo and the original TIDieR are the explicit requirement to describe the setting (i.e., features of the physical environment that go beyond geographic location), the need to report whether blinding was successful (when this was measured), and the need to present the description of placebo components alongside those of the active comparator. We encourage TIDieR-Placebo to be used alongside TIDieR to assist the reporting of placebo or sham components and the trials in which they are used.
What Should Clinicians Tell Patients about Placebo and Nocebo Effects? Practical Considerations Based on Expert Consensus
Introduction: Clinical and laboratory studies demonstrate that placebo and nocebo effects influence various symptoms and conditions after the administration of both inert and active treatments. Objective: There is an increasing need for up-to-date recommendations on how to inform patients about placebo and nocebo effects in clinical practice and train clinicians how to disclose this information. Methods: Based on previous clinical recommendations concerning placebo and nocebo effects, a 3-step, invitation-only Delphi study was conducted among an interdisciplinary group of internationally recognized experts. The study consisted of open- and closed-ended survey questions followed by a final expert meeting. The surveys were subdivided into 3 parts: (1) informing patients about placebo effects, (2) informing patients about nocebo effects, and (3) training clinicians how to communicate this information to the patients. Results: There was consensus that communicating general information about placebo and nocebo effects to patients (e.g., explaining their role in treatment) could be beneficial, but that such information needs to be adjusted to match the specific clinical context (e.g., condition and treatment). Experts also agreed that training clinicians to communicate about placebo and nocebo effects should be a regular and integrated part of medical education that makes use of multiple formats, including face-to-face and online modalities. Conclusions: The current 3-step Delphi study provides consensus-based recommendations and practical considerations for disclosures about placebo and nocebo effects in clinical practice. Future research is needed on how to optimally tailor information to specific clinical conditions and patients’ needs, and on developing standardized disclosure training modules for clinicians.
Implications of Placebo and Nocebo Effects for Clinical Practice
Background: Placebo and nocebo effects occur in clinical or laboratory medical contexts after administration of an inert treatment or as part of active treatments and are due to psychobiological mechanisms such as expectancies of the patient. Placebo and nocebo studies have evolved from predominantly methodological research into a far-reaching interdisciplinary field that is unravelling the neurobiological, behavioural and clinical underpinnings of these phenomena in a broad variety of medical conditions. As a consequence, there is an increasing demand from health professionals to develop expert recommendations about evidence-based and ethical use of placebo and nocebo effects for clinical practice. Methods: A survey and interdisciplinary expert meeting by invitation was organized as part of the 1st Society for Interdisciplinary Placebo Studies (SIPS) conference in 2017. Twenty-nine internationally recognized placebo researchers participated. Results: There was consensus that maximizing placebo effects and minimizing nocebo effects should lead to better treatment outcomes with fewer side effects. Experts particularly agreed on the importance of informing patients about placebo and nocebo effects and training health professionals in patient-clinician communication to maximize placebo and minimize nocebo effects. Conclusions: The current paper forms a first step towards developing evidence-based and ethical recommendations about the implications of placebo and nocebo research for medical practice, based on the current state of evidence and the consensus of experts. Future research might focus on how to implement these recommendations, including how to optimize conditions for educating patients about placebo and nocebo effects and providing training for the implementation in clinical practice.
Evidence-based policy: where is our theory of evidence?
This article critically analyses the concept of evidence in evidence-based policy, arguing that there is a key problem: there is no existing practicable theory of evidence, one which is philosophically-grounded and yet applicable for evidence-based policy. The article critically considers both philosophical accounts of evidence and practical treatments of evidence in evidence-based policy. It argues that both fail in different ways to provide a theory of evidence that is adequate for evidence-based policy. The article contributes to the debate about how evidence can and should be used to reduce contingency in science and in policy based on science.
Evidencebased policy where is our theory of evidence
This article critically analyses the concept of evidence in evidencebased policy, arguing that there is a key problem there is no existing practicable theory of evidence, one which is philosophicallygrounded and yet applicable for evidencebased policy. The article critically considers both philosophical accounts of evidence and practical treatments of evidence in evidencebased policy. It argues that both fail in different ways to provide a theory of evidence that is adequate for evidencebased policy. The article contributes to the debate about how evidence can and should be used to reduce contingency in science and in policy based on science.
The Malaria Cell Atlas: a comprehensive reference of single parasite transcriptomes across the complete Plasmodium life cycle
Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. Here we profile the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire Plasmodium berghei life cycle. We then use our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a complex eukaryotic parasite and an open access reference data set for the study of malaria parasites.