Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
14
result(s) for
"Howick, Virginia M"
Sort by:
A single-cell atlas of Plasmodium falciparum transmission through the mosquito
2021
Malaria parasites have a complex life cycle featuring diverse developmental strategies, each uniquely adapted to navigate specific host environments. Here we use single-cell transcriptomics to illuminate gene usage across the transmission cycle of the most virulent agent of human malaria -
Plasmodium falciparum
. We reveal developmental trajectories associated with the colonization of the mosquito midgut and salivary glands and elucidate the transcriptional signatures of each transmissible stage. Additionally, we identify both conserved and non-conserved gene usage between human and rodent parasites, which point to both essential mechanisms in malaria transmission and species-specific adaptations potentially linked to host tropism. Together, the data presented here, which are made freely available via an interactive website, provide a fine-grained atlas that enables intensive investigation of the
P. falciparum
transcriptional journey. As well as providing insights into gene function across the transmission cycle, the atlas opens the door for identification of drug and vaccine targets to stop malaria transmission and thereby prevent disease.
Here the authors use single-cell RNA-seq to profile the transmission stages of the human malaria parasite
Plasmodium falciparum
as it progresses through the
Anopheles
mosquito. They highlight unique patterns of gene usage throughout this development and identify potential pleiotropic genes that function at multiple life cycle stages.
Journal Article
Single-cell transcriptomics reveals expression profiles of Trypanosoma brucei sexual stages
by
Peacock, Lori
,
Collett, Clare
,
Howick, Virginia M.
in
African trypanosomiasis
,
Animals
,
Biology and Life Sciences
2022
Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei , the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but analysis of the molecular signatures that define these sexual forms is complicated because they mingle with more numerous, mitotically-dividing developmental stages. We used single-cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut, proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale changes in gene expression over a developmental progression from putative sexual forms through metacyclics expressing variant surface glycoprotein genes. The cluster of cells potentially containing sexual forms was characterized by high level transcription of the gamete fusion protein HAP2, together with an array of surface proteins and several genes of unknown function. We linked these expression patterns to distinct morphological forms using immunofluorescence assays and reporter gene expression to demonstrate that the kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by meiotic intermediates and gametes. Further experiments are required to establish whether this protein, currently of unknown function, plays a role in gamete formation and/or fusion.
Journal Article
Using scRNA-seq to Identify Transcriptional Variation in the Malaria Parasite Ookinete Stage
by
Dahalan, Farah Aida
,
Howick, Virginia M.
,
Lawniczak, Mara K. N.
in
Animals
,
Anopheles
,
Blood parasites
2021
The crossing of the mosquito midgut epithelium by the malaria parasite motile ookinete form represents the most extreme population bottleneck in the parasite life cycle and is a prime target for transmission blocking strategies. However, we have little understanding of the clonal variation that exists in a population of ookinetes in the vector, partially because the parasites are difficult to access and are found in low numbers. Within a vector, variation may result as a response to specific environmental cues or may exist independent of those cues as a potential bet-hedging strategy. Here we use single-cell RNA-seq to profile transcriptional variation in Plasmodium berghei ookinetes across different vector species, and between and within individual midguts. We then compare our results to low-input transcriptomes from individual Anopheles coluzzii midguts infected with the human malaria parasite Plasmodium falciparum . Although the vast majority of transcriptional changes in ookinetes are driven by development, we have identified candidate genes that may be responding to environmental cues or are clonally variant within a population. Our results illustrate the value of single-cell and low-input technologies in understanding clonal variation of parasite populations.
Journal Article
The Malaria Cell Atlas
by
Reid, Adam J.
,
Billker, Oliver
,
Russell, Andrew J. C.
in
Animals
,
Anopheles - parasitology
,
Aquatic insects
2019
Several species of the parasite Plasmodium cause human malarial diseases, and, despite determined control efforts, a huge global disease burden remains. Howick et al. present a single-cell analysis of transcription across the malaria parasite life cycle (see the Perspective by Winzeler). Single-cell transcriptomes generated from 10 different life-cycle stages of the rodent-model malaria parasite P. berghei identified 20 “modules” among 5156 core transcriptome genes. These clusters enabled functional assignment of hypothetical and conserved genes, and they hint at further substructure of established life-cycle stages. The atlas also allowed for P. falciparum and P. malariae transcriptomes from patient isolates to be deconvoluted and for classification of parasitemia according to developmental stage. Science , this issue p. eaaw2619 ; see also p. 753 Single-cell methods allow precise developmental timing across the life cycles of several malaria parasite species. Malaria parasites adopt a remarkable variety of morphological life stages as they transition through multiple mammalian host and mosquito vector environments. We profiled the single-cell transcriptomes of thousands of individual parasites, deriving the first high-resolution transcriptional atlas of the entire Plasmodium berghei life cycle. We then used our atlas to precisely define developmental stages of single cells from three different human malaria parasite species, including parasites isolated directly from infected individuals. The Malaria Cell Atlas provides both a comprehensive view of gene usage in a eukaryotic parasite and an open-access reference dataset for the study of malaria parasites.
Journal Article
Genotype and diet shape resistance and tolerance across distinct phases of bacterial infection
by
Lazzaro, Brian P
,
Howick, Virginia M
in
Analysis
,
Animal Systematics/Taxonomy/Biogeography
,
Animals
2014
Background
Host defense against pathogenic infection is composed of resistance and tolerance. Resistance is the ability of the host to limit a pathogen burden, whereas tolerance is the ability to limit the deleterious effects of a given pathogen burden. This distinction recognizes that the fittest host does not necessarily have the most aggressive immune system, suggesting that host-pathogen co-evolution involves more than an escalating arms race between pathogen virulence factors and host antimicrobial activity. How a host balances resistance and tolerance and how this balance influences the evolution of host defense remains unanswered. In order to determine how genotype-by-diet interactions and evolutionary costs of each strategy may constrain the evolution of host defense, we measured survival, fecundity, and pathogen burden over five days in ten genotypes of
Drosophila melanogaster
reared on two diets and infected with the Gram-negative bacterial pathogen
Providencia rettgeri
.
Results
We demonstrated two distinct phases of infection: an acute phase that consists of high mortality, low fecundity, and high pathogen loads, and a chronic phase where there was a substantial but stable pathogen load and mortality and fecundity returned to uninfected levels. We demonstrated genetic variation for resistance in both phases of infection, but found genetic variation for tolerance only in the acute phase. We found genotype-by-diet interactions for tolerance, especially in the acute phase, but genotype-by-diet interaction did not significantly shape resistance. We found a diet-dependent positive relationship between resistance and tolerance and a weak evolutionary cost of resistance, but did not detect any costs of tolerance.
Conclusions
Existing models of tolerance and resistance are overly simplistic. Multi-phase infections such as that studied here are rarely considered, but we show important differences in determination and evolutionary constraints on tolerance and resistance over the two phases of infection. Our observation of genetic variation for tolerance is inconsistent with simple models that predict evolutionary fixation of tolerance alleles, and instead indicate that genetic variation for resistance and tolerance is likely to be maintained by non-independence between resistance and tolerance, condition-dependent evolutionary costs, and environmental heterogeneity.
Journal Article
Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster
by
Petrov, Dmitri A.
,
Lazzaro, Brian P.
,
Kapun, Martin
in
Adaptation, Physiological
,
Alleles
,
Animals
2018
Understanding the rate of evolutionary change and the genetic architecture that facilitates rapid adaptation is a current challenge in evolutionary biology. Comparative studies show that genes with immune function are among the most rapidly evolving genes across a range of taxa. Here, we use immune defence in natural populations of Drosophila melanogaster to understand the rate of evolution in natural populations and the genetics underlying rapid change. We probed the immune system using the natural pathogens Enterococcus faecalis and Providencia rettgeri to measure post-infection survival and bacterial load of wild D. melanogaster populations collected across seasonal time along a latitudinal transect along eastern North America (Massachusetts, Pennsylvania and Virginia). There are pronounced and repeatable changes in the immune response over the approximately 10 generations between spring and autumn collections, with a significant but less distinct difference observed among geographical locations. Genes with known immune function are not enriched among alleles that cycle with seasonal time, but the immune function of a subset of seasonally cycling alleles in immune genes was tested using reconstructed outbred populations. We find that flies containing seasonal alleles in Thioester-containing protein 3 (Tep3) have different functional responses to infection and that epistatic interactions among seasonal Tep3 and Drosomycin-like 6 (Dro6) alleles underlie the immune phenotypes observed in natural populations. This rapid, cyclic response to seasonal environmental pressure broadens our understanding of the complex ecological and genetic interactions determining the evolution of immune defence in natural populations.
Journal Article
Rapid seasonal evolution in innate immunity of wild Drosophila melanogaster
2018
Understanding the rate of evolutionary change and the genetic architecture that facilitates rapid adaptation is a current challenge in evolutionary biology. Comparative studies show that genes with immune function are among the most rapidly evolving genes across a range of taxa. Here, we use immune defence in natural populations of Drosophila melanogaster to understand the rate of evolution in natural populations and the genetics underlying rapid change. We probed the immune system using the natural pathogens Enterococcus faecalis and Providencia rettgeri to measure post-infection survival and bacterial load of wild D. melanogaster populations collected across seasonal time along a latitudinal transect along eastern North America (Massachusetts, Pennsylvania and Virginia). There are pronounced and repeatable changes in the immune response over the approximately 10 generations between spring and autumn collections, with a significant but less distinct difference observed among geographical locations. Genes with known immune function are not enriched among alleles that cycle with seasonal time, but the immune function of a subset of seasonally cycling alleles in immune genes was tested using reconstructed outbred populations. We find that flies containing seasonal alleles in Thioester-containing protein 3 (Tep3) have different functional responses to infection and that epistatic interactions among seasonal Tep3 and Drosomycin-like 6 (Dro6) alleles underlie the immune phenotypes observed in natural populations. This rapid, cyclic response to seasonal environmental pressure broadens our understanding of the complex ecological and genetic interactions determining the evolution of immune defence in natural populations.
Journal Article
Single-cell RNA-seq reveals trans-sialidase-like superfamily gene expression heterogeneity in Trypanosoma cruzi populations
by
Bilbao, Lucia
,
Howick, Virginia M
,
De Gaudenzi, Javier G
in
Chagas disease
,
Developmental stages
,
Gene families
2025,2026
Trypanosoma cruzi, the causative agent of Chagas disease, presents a major public health challenge in Central and South America, affecting approximately 8 million people and placing millions more at risk. The T. cruzi life cycle includes transitions between epimastigote, metacyclic trypomastigote, amastigote, and blood trypomastigote stages, each marked by distinct morphological and molecular adaptations to different hosts and environments. Unlike other trypanosomatids, T. cruzi does not employ antigenic variation but instead relies on a diverse array of cell-surface-associated proteins encoded by large multi-copy gene families (multigene families), essential for infectivity and immune evasion. This study analyzes cell-specific transcriptomes using single-cell RNA sequencing of amastigote and trypomastigote cells to characterize stage-specific surface protein expression during mammalian infection. Through clustering and identification of cell-specific markers, we assigned cells to distinct parasite developmental forms. Analysis of individual cells revealed that surface protein-coding genes, especially members of the trans-sialidase TcS superfamily (TcS), are expressed with greater heterogeneity than single-copy genes. Additionally, no recurrent combinations of TcS genes were observed between individual cells in the population. Our findings thus reveal transcriptomic heterogeneity within trypomastigote populations where each cell displays unique TcS expression profiles. Focusing on the diversity of surface protein expression, this research aims to deepen our understanding of T. cruzi cellular biology and infection strategies.Competing Interest StatementThe authors have declared no competing interest.Footnotes* In Version 1 of our manuscript, Figure 1 was inadvertently omitted due to an error during the conversion of the document to PDF. We have corrected this issue in Version 2, which now includes Figure 1. No other changes were made to the manuscript.
Single-cell transcriptomics reveals expression profiles of Trypanosoma brucei sexual stages
by
Peacock, Lori
,
Howick, Virginia M
,
Collett, Clare
in
African trypanosomiasis
,
Developmental stages
,
Exocrine glands
2021
Early diverging lineages such as trypanosomes can provide clues to the evolution of sexual reproduction in eukaryotes. In Trypanosoma brucei, the pathogen that causes Human African Trypanosomiasis, sexual reproduction occurs in the salivary glands of the insect host, but analysis of the molecular signatures that define these sexual forms is complicated because they mingle with more numerous, mitotically-dividing developmental stages. We used single-cell RNA-sequencing (scRNAseq) to profile 388 individual trypanosomes from midgut, proventriculus, and salivary glands of infected tsetse flies allowing us to identify tissue-specific cell types. Further investigation of salivary gland parasite transcriptomes revealed fine-scale changes in gene expression over a developmental progression from putative sexual forms through metacyclics expressing variant surface glycoprotein genes. The cluster of cells potentially containing sexual forms was characterised by high level transcription of the gamete fusion protein HAP2, together with an array of surface proteins and several genes of unknown function. We linked these expression patterns to distinct morphological forms using immunofluorescence assays and reporter gene expression to demonstrate that the kinetoplastid-conserved gene Tb927.10.12080 is exclusively expressed at high levels by meiotic intermediates and gametes. We speculate that this protein, currently of unknown function, plays a role in gamete formation and/or fusion. Competing Interest Statement The authors have declared no competing interest.
A single-cell atlas of Plasmodium falciparum transmission through the mosquito
by
Howick, Virginia M
,
Lawniczak, Mara K N
,
Real, Eliana
in
Adaptation
,
Disease transmission
,
Erythrocytes
2020
Abstract Malaria parasites have a complex life cycle featuring diverse developmental strategies, each uniquely adapted to navigate specific host environments. Here we use single-cell transcriptomics to illuminate gene usage across the transmission cycle of the most virulent agent of human malaria – Plasmodium falciparum. We reveal developmental trajectories associated with the colonisation of the mosquito midgut and salivary glands and elucidate the transcriptional signatures of each transmissible stage. Additionally, we identify both conserved and nonconserved gene usage between human and rodent parasites, which point to both essential mechanisms in malaria transmission and species-specific adaptations potentially linked to host tropism. Together, the data presented here, which are made freely available via an interactive website, establish the most complete atlas of the P. falciparum transcriptional journey to date. One sentence summary Single-cell transcriptomics of P. falciparum transmission stages highlights developmental trajectories and gene usage. Competing Interest Statement The authors have declared no competing interest. Footnotes * http://malariacellatlas.org/