Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
6 result(s) for "Hryniewiecka, Magdalena"
Sort by:
Complement pathway changes at age 12 are associated with psychotic experiences at age 18 in a longitudinal population-based study: evidence for a role of stress
The complement cascade is a major component of the immune defence against infection, and there is increasing evidence for a role of dysregulated complement in major psychiatric disorders. We undertook a directed proteomic analysis of the complement signalling pathway (n = 29 proteins) using data-independent acquisition. Participants were recruited from the UK avon longitudinal study of parents and children (ALSPAC) cohort who participated in psychiatric assessment interviews at ages 12 and 18. Protein expression levels at age 12 among individuals who reported psychotic experiences (PEs) at age 18 (n = 64) were compared with age-matched controls (n = 67). Six out of the 29 targeted complement proteins or protein subcomponents were significantly upregulated following correction for multiple comparisons (VTN↑, C1RL↑, C8B↑, C8A↑, CFH↑, and C5↑). We then undertook an unbiased plasma proteomic analysis of mice exposed to chronic social stress and observed dysregulation of 11 complement proteins, including three that were altered in the same direction in individuals with PE (C1R↑, CFH↑, and C5↑). Our findings indicate that dysregulation of the complement protein pathway in blood is associated with incidence of psychotic experiences and that these changes may reflect exposure to stress.
Blood-Based Protein Changes in Childhood Are Associated With Increased Risk for Later Psychotic Disorder: Evidence From a Nested Case–Control Study of the ALSPAC Longitudinal Birth Cohort
The identification of early biological changes associated with the psychotic disorder (PD) is important as it may provide clues to the underlying pathophysiological mechanisms. We undertook the first proteomic profiling of blood plasma samples of children who later develop a PD. Participants were recruited from the UK Avon Longitudinal Study of Parents and Children (ALSPAC) cohort who also participated in psychiatric assessment interviews at age 18. Protein expression levels at age 11 were compared between individuals who developed PD at age 18 (n = 37) with population-based age-matched controls (n = 38). Sixty out of 181 plasma proteins profiled were found to be differentially expressed (P < .05) in children with an outcome of the PD. Thirty-four of these proteins were found to be differentially expressed following correction for multiple comparisons. Pathway analysis implicated the complement and coagulation cascade. A second, targeted proteomic approach was used to verify these findings in age 11 plasma from subjects who reported psychotic experiences at age 18 (n = 40) in comparison to age-matched controls (n = 66). Our findings indicate that the complement and coagulation system is dysregulated in the blood during childhood before the development of the PD.
Chronic Adolescent Exposure to Δ-9-Tetrahydrocannabinol in COMT Mutant Mice: Impact on Psychosis-Related and Other Phenotypes
Cannabis use confers a two-fold increase in the risk for psychosis, with adolescent use conferring even greater risk. A high–low activity catechol-O-methyltransferase ( COMT ) polymorphism may modulate the effects of adolescent Δ-9-tetrahydrocannabinol (THC) exposure on the risk for adult psychosis. Mice with knockout of the COMT gene were treated chronically with THC (4.0 and 8.0 mg/kg over 20 days) during either adolescence (postnatal days (PDs) 32–52) or adulthood (PDs 70–90). The effects of THC exposure were then assessed in adulthood across behavioral phenotypes relevant for psychosis: exploratory activity, spatial working memory (spontaneous and delayed alternation), object recognition memory, social interaction (sociability and social novelty preference), and anxiety (elevated plus maze). Adolescent THC administration induced a larger increase in exploratory activity, greater impairment in spatial working memory, and a stronger anti-anxiety effect in COMT knockouts than in wild types, primarily among males. No such effects of selective adolescent THC administration were evident for other behaviors. Both object recognition memory and social novelty preference were disrupted by either adolescent or adult THC administration, independent of genotype. The COMT genotype exerts specific modulation of responsivity to chronic THC administration during adolescence in terms of exploratory activity, spatial working memory, and anxiety. These findings illuminate the interaction between genes and adverse environmental exposures over a particular stage of development in the expression of the psychosis phenotype.
Chronic Adolescent Exposure to Delta-9-Tetrahydrocannabinol in COMT Mutant Mice: Impact on Indices of Dopaminergic, Endocannabinoid and GABAergic Pathways
Cannabis use confers a two-fold increase in risk for psychosis, with adolescent use conferring an even greater risk. A high-low activity polymorphism in catechol-O-methyltransferase (COMT), a gene encoding the COMT enzyme involved in dopamine clearance in the brain, may interact with adolescent cannabis exposure to increase risk for schizophrenia. The impact of such an interaction on central neurotransmitter pathways implicated in schizophrenia is unknown. Male mice with knockout of the COMT gene were treated chronically with delta-9-tetrahydrocannabinol (THC) during adolescence (postnatal day 32-52). We measured the size and density of GABAergic cells and the protein expression of cannabinoid receptor 1 (CB1R) in the prefrontal cortex (PFC) and hippocampus (HPC) in knockout mice relative to heterozygous mutants and wild-type controls. Size and density of dopaminergic neurons was also assessed in the ventral tegmental area (VTA) across the genotypes. COMT genotype × THC treatment interactions were observed for: (1) dopaminergic cell size in the VTA, (2) CB1R protein expression in the HPC, and (3) parvalbumin (PV) cell size in the PFC. No effects of adolescent THC treatment were observed for PV and dopaminergic cell density across the COMT genotypes. COMT genotype modulates the effects of chronic THC administration during adolescence on indices of neurotransmitter function in the brain. These findings illuminate how COMT deletion and adolescent cannabis use can interact to modulate the function of neurotransmitters systems implicated in schizophrenia.
Chronic Adolescent Exposure to Delta-9-Tetrahydrocannabinol in COMT Mutant Mice: Impact on Psychosis-Related and Other Phenotypes
Cannabis use confers a two-fold increase in the risk for psychosis, with adolescent use conferring even greater risk. A high-low activity catechol-O-methyltransferase (COMT) polymorphism may modulate the effects of adolescent Δ-9-tetrahydrocannabinol (THC) exposure on the risk for adult psychosis. Mice with knockout of the COMT gene were treated chronically with THC (4.0 and 8.0 mg/kg over 20 days) during either adolescence (postnatal days (PDs) 32-52) or adulthood (PDs 70-90). The effects of THC exposure were then assessed in adulthood across behavioral phenotypes relevant for psychosis: exploratory activity, spatial working memory (spontaneous and delayed alternation), object recognition memory, social interaction (sociability and social novelty preference), and anxiety (elevated plus maze). Adolescent THC administration induced a larger increase in exploratory activity, greater impairment in spatial working memory, and a stronger anti-anxiety effect in COMT knockouts than in wild types, primarily among males. No such effects of selective adolescent THC administration were evident for other behaviors. Both object recognition memory and social novelty preference were disrupted by either adolescent or adult THC administration, independent of genotype. The COMT genotype exerts specific modulation of responsivity to chronic THC administration during adolescence in terms of exploratory activity, spatial working memory, and anxiety. These findings illuminate the interaction between genes and adverse environmental exposures over a particular stage of development in the expression of the psychosis phenotype.
Tumor Necrosis Factor Receptor-Associated Periodic Syndrome (TRAPS) with a New Pathogenic Variant in TNFRSF1A Gene in a Family of the Adult Male with Renal AA Amyloidosis—Diagnostic and Therapeutic Challenge for Clinicians
Tumor necrosis factor receptor-associated periodic syndrome (TRAPS) belongs to systemic autoinflammatory diseases (AIDs). Many of these syndromes are genetically conditioned and can be inherited. Diagnosis relies on clinical symptoms and should be confirmed by genetic testing. One of the most serious complications is AA amyloidosis. We present the diagnostic route of a 33-year-old male with AA amyloidosis and his children, leading to diagnosis of monogenic autoinflammatory syndrome, confirmed by genetic analysis. A novel variant of the in-frame insertion type in one allele of TNFRSF1A gene was found by whole exome sequencing and confirmed by Sanger sequencing, which allowed a diagnosis of TRAPS. Three-dimensional modeling was used to assess the structural changes introduced into TNFR1 molecule by the insertion. The analysis of the 3D model revealed that accommodation of the 4AA insert induces misalignment of three cysteine bridges (especially the C70-C96 bridge) in the extracellular domain, leading to putatively misfolded and improperly functioning TNFR1. Three of the patient’s daughters inherited the same variant of the TNFRSF1A gene and presented TRAPS symptoms. TRAPS is a very rare disease, but in the presence of suggestive symptoms the genetic diagnostic workout should be undertaken. Early diagnosis followed by appropriate clinical management can prevent irreversible complications.