Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
42 result(s) for "Hsia, Henry C."
Sort by:
Single cell transcriptomic landscape of diabetic foot ulcers
Diabetic foot ulceration (DFU) is a devastating complication of diabetes whose pathogenesis remains incompletely understood. Here, we profile 174,962 single cells from the foot, forearm, and peripheral blood mononuclear cells using single-cell RNA sequencing. Our analysis shows enrichment of a unique population of fibroblasts overexpressing MMP1, MMP3, MMP11, HIF1A, CHI3L1 , and TNFAIP6 and increased M1 macrophage polarization in the DFU patients with healing wounds. Further, analysis of spatially separated samples from the same patient and spatial transcriptomics reveal preferential localization of these healing associated fibroblasts toward the wound bed as compared to the wound edge or unwounded skin. Spatial transcriptomics also validates our findings of higher abundance of M1 macrophages in healers and M2 macrophages in non-healers. Our analysis provides deep insights into the wound healing microenvironment, identifying cell types that could be critical in promoting DFU healing, and may inform novel therapeutic approaches for DFU treatment. Diabetic foot ulcers (DFUs) remain a complication of diabetes that are difficult to heal and lead to disability. Here the authors use single-cell RNA-sequencing and spatial transcriptomics to characterize the DFU cellular landscape and identify a population of fibroblasts that is associated with successful wound closure.
Myofibroblast proliferation and heterogeneity are supported by macrophages during skin repair
Fibroblasts deposit extracellular matrix (ECM) molecules to regulate tissue strength and function. However, if too much ECM is deposited, fibrosis and scarring results. Shook et al. examined cells during mouse skin wound healing, fibrosis, and aging (see the Perspective by Willenborg and Eming). They identified distinct subpopulations of myofibroblasts, including cells identified as adipocyte precursors (APs). In cellular ablation mouse models, CD301b-expressing macrophages selectively activated proliferation of APs, but not other myofibroblasts. Myofibroblast composition and gene expression changed during aging. Thus, macrophage-fibroblast interactions are important during tissue repair and aging, which may have therapeutic implications for chronic wounds and fibrotic disease. Science , this issue p. eaar2971 ; see also p. 891 During skin repair, macrophages activate proliferation of a myofibroblast subset that can form adipocytes and promote dermal repair. During tissue repair, myofibroblasts produce extracellular matrix (ECM) molecules for tissue resilience and strength. Altered ECM deposition can lead to tissue dysfunction and disease. Identification of distinct myofibroblast subsets is necessary to develop treatments for these disorders. We analyzed profibrotic cells during mouse skin wound healing, fibrosis, and aging and identified distinct subpopulations of myofibroblasts, including adipocyte precursors (APs). Multiple mouse models and transplantation assays demonstrate that proliferation of APs but not other myofibroblasts is activated by CD301b-expressing macrophages through insulin-like growth factor 1 and platelet-derived growth factor C. With age, wound bed APs and differential gene expression between myofibroblast subsets are reduced. Our findings identify multiple fibrotic cell populations and suggest that the environment dictates functional myofibroblast heterogeneity, which is driven by fibroblast-immune interactions after wounding.
Reversible Modulation of Myofibroblast Differentiation in Adipose-Derived Mesenchymal Stem Cells
Unregulated activity of myofibroblasts, highly contractile cells that deposit abundant extracellular matrix (ECM), leads to fibrosis. To study the modulation of myofibroblast activity, we used human adipose-derived mesenchymal stem cells (ADSCs), which have much potential in regenerative medicine. We found that ADSCs treated with TGF-β developed a myofibroblastic phenotype with increases in α-smooth muscle actin (α-SMA), a myofibroblast marker, and ECM proteins type I collagen and fibronectin. In contrast, treatment with bFGF had the opposite effect. bFGF-differentiated ADSCs showed marked down-regulation of α-SMA expression, collagen I, and fibronectin, and loss of focal adhesions and stress fibers. Functionally, bFGF-differentiated ADSCs were significantly more migratory, which correlated with up-regulation of tenascin-C, an anti-adhesive ECM protein, and vimentin, a pro-migratory cytoskeletal protein. On the other hand, TGF-β-differentiated ADSCs were significantly more contractile than bFGF-differentiated cells. Interestingly, cells completely reversed their morphologies, marker expression, signaling pathways, and contractility versus migratory profiles when switched from culture with one growth factor to the other, demonstrating that the myofibroblast differentiation process is not terminal. Cell differentiation was associated with activation of Smad2 downstream of TGF-β and of ERK/MAP kinase downstream of bFGF. Reversibility of the TGF-β-induced myofibroblastic phenotype depends, in part, on bFGF-induced ERK/MAP kinase signaling. These findings show that ADSC differentiation into myofibroblasts and re-differentiation into fibroblast-like cells can be manipulated with growth factors, which may have implications in the development of novel therapeutic strategies to reduce the risk of fibrosis.
The potential and limitations of induced pluripotent stem cells to achieve wound healing
Wound healing is the physiologic response to a disruption in normal skin architecture and requires both spatial and temporal coordination of multiple cell types and cytokines. This complex process is prone to dysregulation secondary to local and systemic factors such as ischemia and diabetes that frequently lead to chronic wounds. Chronic wounds such as diabetic foot ulcers are epidemic with great cost to the healthcare system as they heal poorly and recur frequently, creating an urgent need for new and advanced therapies. Stem cell therapy is emerging as a potential treatment for chronic wounds, and adult-derived stem cells are currently employed in several commercially available products; however, stem cell therapy is limited by the need for invasive harvesting techniques, immunogenicity, and limited cell survival in vivo. Induced pluripotent stem cells (iPSC) are an exciting cell type with enhanced therapeutic and translational potential. iPSC are derived from adult cells by in vitro induction of pluripotency, obviating the ethical dilemmas surrounding the use of embryonic stem cells; they are harvested non-invasively and can be transplanted autologously, reducing immune rejection; and iPSC are the only cell type capable of being differentiated into all of the cell types in healthy skin. This review focuses on the use of iPSC in animal models of wound healing including limb ischemia, as well as their limitations and methods aimed at improving iPSC safety profile in an effort to hasten translation to human studies.
Single cell RNA seq reveals the pro-regenerative phenotype of thrombospondin-2 deficient dermal fibroblasts
Fibroblasts display complex functions linked to distinct gene expression profiles. These profiles influence matrix production, cell communication, and tissue development and repair. Thrombospondin-2 (TSP2), produced by fibroblasts, is a potent angiogenesis inhibitor and negatively associated with tissue repair. Single-cell RNA sequencing (scRNA-seq) on WT and TSP2 KO skin fibroblasts demonstrate distinct cell heterogeneity. Specifically, we found an enrichment of Sox10 +  multipotent progenitor cells, identified as Schwann precursor cells, in TSP2 KO fibroblasts, while fibrosis-related subpopulations decreased. Immunostaining of mouse back skin wounds and cells validated the increase of this Sox10  + population. Furthermore, in silico analysis suggested enhanced PDGF-β-mediated pro-survival and inhibited BMP4-mediated differentiation signaling pathways. These molecular and functional alterations likely contribute to improved healing and increased neurogenesis in TSP2 KO wounds. Overall, our findings describe the heterogeneity of dermal fibroblasts (DFs) and identify pro-regenerative features of TSP2 KO fibroblasts.
Apoptosis recognition receptors regulate skin tissue repair in mice
Apoptosis and clearance of apoptotic cells via efferocytosis are evolutionarily conserved processes that drive tissue repair. However, the mechanisms by which recognition and clearance of apoptotic cells regulate repair are not fully understood. Here, we use single-cell RNA sequencing to provide a map of the cellular dynamics during early inflammation in mouse skin wounds. We find that apoptotic pathways and efferocytosis receptors are elevated in fibroblasts and immune cells, including resident Lyve1 + macrophages, during inflammation. Interestingly, human diabetic foot wounds upregulate mRNAs for efferocytosis pathway genes and display altered efferocytosis signaling via the receptor Axl and its ligand Gas6 . During early inflammation in mouse wounds, we detect upregulation of Axl in dendritic cells and fibroblasts via TLR3-independent mechanisms. Inhibition studies in vivo in mice reveal that Axl signaling is required for wound repair but is dispensable for efferocytosis. By contrast, inhibition of another efferocytosis receptor, Timd4, in mouse wounds decreases efferocytosis and abrogates wound repair. These data highlight the distinct mechanisms by which apoptotic cell detection coordinates tissue repair and provides potential therapeutic targets for chronic wounds in diabetic patients. Our skin is constantly exposed to potential damage from the outside world, and it is vital that any injuries are repaired quickly and effectively. Diabetes and many other health conditions can hamper wound healing, resulting in chronic wounds that are both painful and at risk of becoming infected, which can lead to serious illness and death of patients. After an injury to the skin, the wound becomes inflamed as immune cells rush to the site of injury to fight off infection and clear the wound of dead cells and debris. Some of these dead cells will have died by a highly controlled process known as apoptosis. These so-called apoptotic cells display signals on their surface that nearby healthy cells recognize. This triggers the healthy cells to eat the apoptotic cells to remove them from the wound. Previous studies have linked changes in cell death and the removal of dead cells to chronic wounds in patients with diabetes, but it remains unclear how removing dead cells from the wound affects healing. Justynski et al. used a genetic technique called single-cell RNA sequencing to study the patterns of gene activity in mouse skin cells shortly after a wound. The experiments found that, as the area around the wound started to become inflamed, the wounded cells produced signals of apoptosis that in turn triggered nearby healthy cells to remove them. Other signals relating to the removal of dead cells were also widespread in the mouse wounds and treating the wounds with drugs that inhibit these signals resulted in multiple defects in the healing process. Further experiments used the same approach to study samples of tissue taken from foot wounds in human patients with or without diabetes. This revealed that several genes involved in the removal of dead cells were more highly expressed in the wounds of diabetic patients than in the wounds of other individuals. These findings indicate that for wounds to heal properly it is crucial for the body to detect and clear apoptotic cells from the wound site. Further studies building on this work may help to explain why some diabetic patients suffer from chronic wounds and help to develop more effective treatments for them.
Cellular therapeutics and immunotherapies in wound healing – on the pulse of time?
Chronic, non-healing wounds represent a significant challenge for healthcare systems worldwide, often requiring significant human and financial resources. Chronic wounds arise from the complex interplay of underlying comorbidities, such as diabetes or vascular diseases, lifestyle factors, and genetic risk profiles which may predispose extremities to local ischemia. Injuries are further exacerbated by bacterial colonization and the formation of biofilms. Infection, consequently, perpetuates a chronic inflammatory microenvironment, preventing the progression and completion of normal wound healing. The current standard of care (SOC) for chronic wounds involves surgical debridement along with localized wound irrigation, which requires inpatient care under general anesthesia. This could be followed by, if necessary, defect coverage via a reconstructive ladder utilizing wound debridement along with skin graft, local, or free flap techniques once the wound conditions are stabilized and adequate blood supply is restored. To promote physiological wound healing, a variety of approaches have been subjected to translational research. Beyond conventional wound healing drugs and devices that currently supplement treatments, cellular and immunotherapies have emerged as promising therapeutics that can behave as tailored therapies with cell- or molecule-specific wound healing properties. However, in contrast to the clinical omnipresence of chronic wound healing disorders, there remains a shortage of studies condensing the current body of evidence on cellular therapies and immunotherapies for chronic wounds. This review provides a comprehensive exploration of current therapies, experimental approaches, and translational studies, offering insights into their efficacy and limitations. Ultimately, we hope this line of research may serve as an evidence-based foundation to guide further experimental and translational approaches and optimize patient care long-term.
Keratinocytes as active regulators of cutaneous and mucosal immunity: a systematic review across inflammatory epithelial disorders
Keratinocytes are increasingly recognized as active regulators of immunity in both skin and mucosal inflammation. Although numerous studies have described their functions in individual conditions, no systematic synthesis has compiled keratinocyte-driven immune mechanisms across the major categories of epithelial injury disorders. We conducted a systematic review to fill this gap and identify both shared and disease-specific pathways that underlie keratinocyte-immune crosstalk in prototypical inflammatory dermatoses. A PRISMA-compliant systematic review of studies investigating the role of keratinocytes in immune-mediated skin diseases marked by epithelial injury was performed in MEDLINE, EMBASE, and CENTRAL databases. Included conditions spanned atopic dermatitis (AD), psoriasis, lichen planus (LP), bullous pemphigoid (BP), lupus erythematosus (LE), and graft-versus-host disease (GvHD). These were chosen because they are among the most common and clinically relevant inflammatory dermatoses, many with mucosal involvement, and together reflect diverse autoimmune, autoinflammatory, and alloimmune mechanisms. Key outcomes included keratinocyte signaling pathways, immune interactions, and tissue-specific responses. Eighty-two studies met inclusion criteria: AD (n=49), psoriasis (n=11), LP (n=10), BP (n=3), LE (n=6), and GvHD (n=4). Keratinocytes were consistently implicated in cytokine production (e.g., IL-1β, IL-6, TNF-α, TSLP, IL-33), immune cell recruitment, and antigen presentation (via upregulation of MHC class II and costimulatory molecules such as ICAM-1 or B7). Shared activation pathways included NF-κB, JAK/STAT, and MAPK. Distinct immune profiles emerged across diseases: Th2-skewed responses in AD and BP, Th1/Th17 in psoriasis and LP, and type I interferons in LE and GvHD. Stress keratins (KRT6, KRT16, KRT17) were frequently upregulated and acted as amplifiers of inflammatory signaling. Of the included studies, the majority investigated skin, while mucosal data were largely limited to oral lichen planus and GvHD; mucosal keratinocytes were more often linked to type I interferon-driven apoptosis, whereas cutaneous keratinocytes predominantly amplified inflammation through cytokine and chemokine release, with lupus as an exception. This systematic review highlights keratinocytes as active regulators rather than passive bystanders in epithelial injury disorders. By integrating diverse inflammatory cues, keratinocytes engage shared and disease-specific pathways that shape immune responses across the spectrum of cutaneous and mucosal inflammation.
Human iPSC-Derived Vascular Smooth Muscle Cells in a Fibronectin Functionalized Collagen Hydrogel Augment Endothelial Cell Morphogenesis
Tissue-engineered constructs have immense potential as autologous grafts for wound healing. Despite the rapid advancement in fabrication technology, the major limitation is controlling angiogenesis within these constructs to form a vascular network. Here, we aimed to develop a 3D hydrogel that can regulate angiogenesis. We tested the effect of fibronectin and vascular smooth muscle cells derived from human induced pluripotent stem cells (hiPSC-VSMC) on the morphogenesis of endothelial cells. The results demonstrate that fibronectin increases the number of EC networks. However, hiPSC-VSMC in the hydrogel further substantiated the number and size of EC networks by vascular endothelial growth factor and basic fibroblast growth factor secretion. A mechanistic study shows that blocking αvβ3 integrin signaling between hiPSC-VSMC and fibronectin impacts the EC network formation via reduced cell viability and proangiogenic growth factor secretion. Collectively, this study set forth initial design criteria in developing an improved pre-vascularized construct.
A Dense Fibrillar Collagen Scaffold Differentially Modulates Secretory Function of iPSC-Derived Vascular Smooth Muscle Cells to Promote Wound Healing
The application of human-induced pluripotent stem cells (hiPSCs) to generate vascular smooth muscle cells (hiPSC-VSMCs) in abundance is a promising strategy for vascular regeneration. While hiPSC-VSMCs have already been utilized for tissue-engineered vascular grafts and disease modeling, there is a lack of investigations exploring their therapeutic secretory factors. The objective of this manuscript was to understand how the biophysical property of a collagen-based scaffold dictates changes in the secretory function of hiPSC-VSMCs while developing hiPSC-VSMC-based therapy for durable regenerative wound healing. We investigated the effect of collagen fibrillar density (CFD) on hiPSC-VSMC’s paracrine secretion and cytokines via the construction of varying density of collagen scaffolds. Our study demonstrated that CFD is a key scaffold property that modulates the secretory function of hiPSC-VSMCs. This study lays the foundation for developing collagen-based scaffold materials for the delivery of hiPSC-VSMCs to promote regenerative healing through guiding paracrine signaling pathways.