Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
56 result(s) for "Hu, Bingshan"
Sort by:
Could Novel Spinal Braces with Flexibility, Robotic Components, and Individualized Design Generate Sufficient Biomechanical Treatment Efficacy in Patients with Scoliosis?
Background: Patients with adolescent idiopathic scoliosis (AIS) require effective bracing to control curve progression. However, most traditional spinal braces commonly pose challenges in terms of undesired bulkiness and restricted mobility. Recent advancements have focused on innovative brace designs, utilizing novel materials and structural configurations to improve wearability and functionality. However, it remains unclear how effective these next-generation braces are biomechanically compared to traditional braces. Objectives: This review aimed to analyze the design features of next-generation AIS braces and assess their biomechanical effectiveness via reviewing contemporary studies. Methods: Studies on newly designed scoliosis braces over the past decade were searched in databases, including Web of Science, PubMed, ScienceDirect, Wiley, EBCOHost and SpringerLink. The Joanna Briggs Institute Critical Appraisal Checklist for Cohort Studies was adopted to evaluate the quality of the included studies. The data extracted for biomechanical effect analysis included brace components/materials, design principle, interfacial pressure, morphological changes, and intercomparison parameters. Results: A total of 19 studies encompassing 12 different kinds of braces met the inclusion/exclusion criteria. Clinical effectiveness was reported in 14 studies, with an average short-term Cobb angle correction of 25.4% (range: 12.41–34.3%) and long-term correction of 18.22% (range: 15.79–19.3%). This result aligned broadly with the previously reported efficacy of the traditional braces in short-term cases (range: 12.36–31.33%), but was lower than the long-term ones (range: 23.02–33.6%). Two included studies reported an interface pressure range between 6.0 kPa and 24.4 kPa for novel braces, which was comparable to that of the traditional braces (4.8–30.0 kPa). Additionally, five of six studies reported the trunk asymmetric parameters and demonstrated improvement in trunk alignment. Conclusions: This study demonstrates that most newly designed scoliosis braces could achieve comparable biomechanical efficacy to the conventional designs, particularly in interface pressure management and Cobb angle correction. However, future clinical adoption of these novel braces requires further improvements of ergonomic design and three-dimensional correction, as well as more investigation and rigorous evidence on the long-term treatment outcomes and cost-effectiveness.
Design and torque control base on neural network PID of a variable stiffness joint for rehabilitation robot
Variable stiffness joints have been gradually applied in rehabilitation robots because of their intrinsic compliance and greater ability to adjust mechanical stiffness. This paper designs a variable stiffness joint for upper limb rehabilitation training. The joint adopts the variable stiffness principle based special curved surface. The trapezoidal lead screw in the variable stiffness module has a self-locking function, and the stiffness can be maintained without the continuous output torque of the motor. In the aspect of control, back propagation (BP) neural network PID control strategy is used to control the torque of variable stiffness joint. Experiments show that this control method can effectively improve the torque control performance of variable stiffness joints in the case of low stiffness, and the centripetal isotonic resistance training can be realized by using the joints and control methods designed in this paper.
Modeling and Position Control Simulation Research on Shape Memory Alloy Spring Actuator
The shape memory alloy (SMA) actuator is widely used in aerospace, medical and robot fields because of its advantages of low driving voltage, large driving force, no noise and high-power–weight ratio. Therefore, it is of great significance to establish the theoretical model of the SMA actuator and analyze the driving characteristics of the SMA actuator. On the basis of summarizing the constitutive model of the shape memory alloy spring, the phase transformation dynamics model of SMA including the minor hysteresis loop is established using the Duhem model in this paper, and the theoretical models of the bias and differential SMA spring actuator are established. At the same time, a PID position controller including anti-saturation and anti-overheating functions is proposed to control the position of the SMA actuator. Finally, the position control simulation model of the SMA spring actuator is established and simulated. Simulation results show that the position of the SMA actuator can be well controlled by using the model and control method established in this paper.
Optimal Design and Simulation of a Microsuction Cup Integrated with a Valveless Piezoelectric Pump for Robotics
The traditional suction mechanism with an air pump in robotics is difficult to miniaturize. Integrating a piezoelectric pump into a suction cup is an effective method to achieve miniaturization. In this paper, a novel suction cup with a piezoelectric micropump is designed. The micropump is valveless and the suction cup is designed with a laminated structure in order to facilitate miniaturizing and manufacturing. A systematic optimization design method of the suction cup is introduced which addresses the static and dynamic driving characteristics of the piezoelectric actuator and the rectifying efficiency of diffuser/nozzle’s optimization. The design is verified via simulation using an improved equivalent electric network model. Static lumped parameters in this model are calculated by the finite element method instead of the traditional analytic method, and the diffuser/nozzle’s flow resistance is computed by integrating and introducing rectifying efficiency coefficient. Simulation results indicate that the suction cup can generate a stable negative pressure, and the equivalent electric network model can improve the simulation efficiency and accuracy. The maximum steady-state negative pressure of the suction cup can also be effectively improved after optimization.
Research on adaptive impedance control technology of upper limb rehabilitation robot based on impedance parameter prediction
Introduction: With the aggravation of aging and the growing number of stroke patients suffering from hemiplegia in China, rehabilitation robots have become an integral part of rehabilitation training. However, traditional rehabilitation robots cannot modify the training parameters adaptively to match the upper limbs’ rehabilitation status automatically and apply them in rehabilitation training effectively, which will improve the efficacy of rehabilitation training. Methods: In this study, a two-degree-of-freedom flexible drive joint rehabilitation robot platform was built. The forgetting factor recursive least squares method (FFRLS) was utilized to estimate the impedance parameters of human upper limb end. A reward function was established to select the optimal stiffness parameters of the rehabilitation robot. Results: The results confirmed the effectiveness of the adaptive impedance control strategy. The findings of the adaptive impedance control studies showed that the adaptive impedance control had a significantly greater reward than the constant impedance control, which was in line with the simulation results of the variable impedance control. Moreover, it was observed that the levels of robot assistance could be suitably modified based on the subject’s different participation. Discussion: The results facilitated stroke patients’ upper limb rehabilitation by enabling the rehabilitation robot to adaptively change the impedance parameters according to the functional status of the affected limb. In clinic therapy, the proposed control strategy may help to adjust the reward function for different patients to improve the rehabilitation efficacy eventually.
Gait phase recognition of children with cerebral palsy via deep learning based on IMU data from a soft ankle exoskeleton
Accurate gait-phase identification in children with Cerebral Palsy (CP) constitutes a pivotal prerequisite for evidence-based rehabilitation. Addressing the precise detection of gait disturbances under natural ambulation, we propose a deep-learning framework that integrates a stacked denoising autoencoder (SDA) with a long short-term memory network (SDA–LSTM) to classify four canonical gait phases. A community-oriented dataset was constructed by synchronizing ankle-mounted inertial measurement units (IMU) with plantar-pressure insoles; natural gait sequences of six children with mild CP were acquired in open environments. The SDA layer robustly extracts discriminative representations from non-stationary, high-noise signals, whereas the LSTM module models inter-phase temporal dependencies, thereby enhancing generalization cross-user. In noise-free conditions the SDA–LSTM framework attained 97.83% accuracy, significantly exceeding SVM (94.68%), random forest (96.05%), and standalone LSTM (95.86%). Under additive Gaussian noise with SNR ranging from 5 to 30 dB, the model preserved stable performance; at 10 dB SNR (Signal-to-Noise Ratio), accuracy remained 90.96%, corroborating its exceptional robustness. These findings demonstrate that SDA–LSTM effectively handles the complex, heterogeneous gait patterns of children with CP and is readily deployable for clinical assessment and exoskeletal assistance systems, indicating substantial translational potential.
Research on design and control methods of a lightweight upper limb joint isokinetic rehabilitation training equipment
Isokinetic exercise can improve joint muscle strength and stability, making it suitable for early rehabilitation of stroke patients. However, traditional isokinetic equipment is bulky and costly, and cannot effectively avoid external environmental interference. This paper designed a lightweight upper limb joint isokinetic rehabilitation training equipment, with a control system that includes a speed planning strategy and speed control with disturbance rejection. Based on the established human-machine kinematic closed-loop model between the equipment and the user, a dynamic evaluation method of torque at the joint level was proposed. To validate the effectiveness of the equipment, experiments were conducted by manually applying random disturbances to the equipment operated at an isokinetic speed. The results showed that the root mean square error between the observed torque curve of the second-order linear extended state observer used in this paper and the actual disturbance curve was 0.52, and the maximum speed tracking error of the speed control algorithm was 1.27%. In fast and slow sinusoidal speed curve tracking experiments, the root mean square errors of the speed tracking results for this algorithm were 9.65 and 5.27, respectively, while the tracking errors for the PID speed control algorithm under the same environment were 19.94 and 12.11. The research results indicate that compared with traditional PID control method, the proposed control strategy demonstrates superior performance in achieving isokinetic control and suppressing external disturbances, thereby exhibiting significant potential in promoting upper limb rehabilitation among patients.
Design and Massaging Force Analysis of Wearable Flexible Single Point Massager Imitating Traditional Chinese Medicine
In the theory of traditional Chinese medicine, acupoints refer to special points and areas on the meridian line of the human body. Traditional Chinese medicine believes that the application of unique techniques such as pressing, kneading, rubbing, pushing, and patting to acupoints or massage with the help of specific tools has the effects of promoting blood circulation, dredging meridians, and eliminating fatigue. At present, most automatic massage devices are for large-area massage of the trunk, and few are specifically for acupoint massage of the limbs. First, this paper analyzes the characteristics of traditional Chinese medical acupoint massage and then obtains the design index of an automatic acupoint massage device. After that, based on the principle of a series elastic actuating mechanism, a flexible uni-acupoint massage device and control system, imitating the acupoint massage technique of traditional Chinese medicine, were designed. In order to analyze the massage force of the massage device, the man–machine contact dynamic model of the massage device was established, and the force of the massage device was simulated and analyzed. Finally, an experimental platform was built to verify the massage force and massage process of the massage device. The experimental results show that the massage device designed in this paper meets the indexes of traditional Chinese medical massage, in terms of the massage process and massage force, and verify the rationality of the design.
Design and Assist-as-Needed Control of Flexible Elbow Exoskeleton Actuated by Nonlinear Series Elastic Cable Driven Mechanism
Exoskeletons can assist the daily life activities of the elderly with weakened muscle strength, but traditional rigid exoskeletons bring parasitic torque to the human joints and easily disturbs the natural movement of the wearer’s upper limbs. Flexible exoskeletons have more natural human-machine interaction, lower weight and cost, and have great application potential. Applying assist force according to the patient’s needs can give full play to the wearer’s remaining muscle strength, which is more conducive to muscle strength training and motor function recovery. In this paper, a design scheme of an elbow exoskeleton driven by flexible antagonistic cable actuators is proposed. The cable actuator is driven by a nonlinear series elastic mechanism, in which the elastic elements simulate the passive elastic properties of human skeletal muscle. Based on an improved elbow musculoskeletal model, the assist torque of exoskeleton is predicted. An assist-as-needed (AAN) control algorithm is proposed for the exoskeleton and experiments are carried out. The experimental results on the experimental platform show that the root mean square error between the predicted assist torque and the actual assist torque is 0.00226 Nm. The wearing experimental results also show that the AAN control method designed in this paper can reduce the activation of biceps brachii effectively when the exoskeleton assist level increases.
Design and Control of a Nonlinear Series Elastic Cable Actuator Based on the Hill Muscle Model
The bionic design of muscles is a research hotspot at present. Many researchers have designed bionic elastic actuators based on the Hill muscle model, and most of them include an active contraction element, passive contraction element and series elastic element, but they need more parametric design of mechanical structure and control under the guidance of Hill muscle model. In this research, a nonlinear series elastic cable actuating mechanism is designed in which the parameters of the elastic mechanism are optimized based on the Hill muscle model to fit the nonlinear passive elasticity of a muscle. Through the force–position relationship determined by the Hill muscle model, the output force and position of a nonlinear series elastic cable actuator are controlled to simulate the active contraction performance of a muscle. The experiments show that the proposed design and control method can make the nonlinear cable actuator have good muscle-like output force–displacement characteristics.