Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Content Type
      Content Type
      Clear All
      Content Type
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Item Type
    • Is Full-Text Available
    • Subject
    • Country Of Publication
    • Publisher
    • Source
    • Target Audience
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
17,029 result(s) for "Hu, Cheng"
Sort by:
The gale
\"One morning, so early that the fog still clings to the surface of the river, a young boy accompanies his yeye seven miles to the grassy field behind their home in order to cut satintail to feed the livestock.-- Provided by publisher.
Photoreceptor protection by mesenchymal stem cell transplantation identifies exosomal MiR-21 as a therapeutic for retinal degeneration
Photoreceptor apoptosis is recognized as one key pathogenesis of retinal degeneration, the counteraction of which represents a promising approach to safeguard visual function. Recently, mesenchymal stem cell transplantation (MSCT) has demonstrated immense potential to treat ocular disorders, in which extracellular vesicles (EVs), particularly exosomes, have emerged as effective ophthalmological therapeutics. However, whether and how MSCT protects photoreceptors against apoptotic injuries remains largely unknown. Here, we discovered that intravitreal MSCT counteracted photoreceptor apoptosis and alleviated retinal morphological and functional degeneration in a mouse model of photoreceptor loss induced by N-methyl-N-nitrosourea (MNU). Interestingly, effects of MSCT were inhibited after blockade of exosomal generation by GW4869 preconditioning. Furthermore, MSC-derived exosomal transplantation (EXOT) effectively suppressed MNU-provoked photoreceptor injury. Notably, therapeutic efficacy of MSCT and EXOT on MNU-induced retinal degeneration was long-lasting as photoreceptor preservance and retinal maintenance were detected even after 1–2 months post to injection for only once. More importantly, using a natural occurring retinal degeneration model caused by a nonsense mutation of Phosphodiesterase 6b gene (Pde6bmut), we confirmed that MSCT and EXOT prevented photoreceptor loss and protected long-term retinal function. In deciphering therapeutic mechanisms regarding potential exosome-mediated communications, we identified that miR-21 critically maintained photoreceptor viability against MNU injury by targeting programmed cell death 4 (Pdcd4) and was transferred from MSC-derived exosomes in vivo for functional regulation. Moreover, miR-21 deficiency aggravated MNU-driven retinal injury and was restrained by EXOT. Further experiments revealed that miR-21 mediated therapeutic effects of EXOT on MNU-induced photoreceptor apoptosis and retinal dysfunction. These findings uncovered the efficacy and mechanism of MSCT-based photoreceptor protection, indicating exosomal miR-21 as a therapeutic for retinal degeneration.
Evaluation of the Effects of Cold Plasma on Cell Membrane Lipids and Oxidative Injury of Salmonella typhimurium
Salmonella typhimurium (S. typhimurium) is a major causative agent of foodborne illness worldwide. Cold plasma (CP) was used to inactivate S. typhimurium and to investigate the effect of CP on cell membrane lipids and oxidative injury of cells. Results indicated that the inactivation effect of CP on S. typhimurium was positively correlated with the treatment time and voltage. S. typhimurium was undetectable (total number of surviving colonies <2 log CFU/mL) after 5 min treatment with the voltage of 50 V. CP treatment caused damage to the cell membrane of S. typhimurium and the leakage of cell contents, and the relative content of unsaturated fatty acids in cell membrane decreased. Cell membrane lipids were oxidized; the malondialdehyde content increased from 0.219 nmol/mL to 0.658 nmol/mL; the catalase activity of S. typhimurium solution increased from 751 U/mL to 2542 U/mL; and the total superoxide dismutase activity increased from 3.076 U/mL to 4.54 U/mL, which confirmed the oxidative damage in S. typhimurium cell membrane caused by CP treatment. It was demonstrated that the potential application of plasma-mediated reactive oxygen species is suitable for destroying the structures of the cell membrane and ensuring the microbial safety of fresh food samples.
Arbuscular mycorrhizal fungi and its major role in plant growth, zinc nutrition, phosphorous regulation and phytoremediation
Arbuscular mycorrhizae fungi (AMF) are a big player of the ecosystem which shows a major concern over plant nutrition by providing access to the soil-derived nutrients. Naturally, an intimate association between plant roots and AMF is observed. AMF are involved in improvement on the soil water regime and nutrient uptake both in the biotic and abiotic stress situations such as drought, temperature extreme, heavy metals, salinity, pathogen and metal pollution. This kind of symbiotic relationship between plant roots and fungal hyphae is observed to be 80% of the terrestrial plant species worldwide. In plant AMF association fungal hyphae are benefitted by obtaining sugar from the host plants root and host plants root are ameliorated by improved uptake of water and nutrients from soil surface. AMF have a dual role to manage the Zn nutrition in soil. For example below a critical Zn concentration, Zn uptake is enhanced by AMF application and above the critical level, Zn translocation to plant shoots is restricted. Synergistic association between Zn and AMF is important for sustainable yield and quality. It is observed that grain Zn content in the field is increased with applying AMF. AMF help in the plant growth, development and reproduction, as the Zn is essential for pollen tube formation. By AMF application there is an increment in the content of lycopene, vitamin C, vitamin A and antioxidant activities than non AMF plants in tomato. In traditional driven agriculture, inherent soil fertility is the major source of P with an occasional supply of manure for the crops. But after modernization in agriculture results in overexploitation of the P and results in low crop yield and farm income. Rock phosphate is the major source of the phosphatic fertilizer and is non-renewable which could be exhausted in the next 50–100 years. Moreover, the stimulation of secondary metabolites synthesis results in the improvement of crop quality by sustainable use of phosphatic fertilizers. So P application techniques which can also ameliorate AMF are widely promising. This is how AMF play a pivotal role in developing present era farming practices towards sustainable agriculture. Phytoremediation of heavy metals from different soil types has potential benefit of using AMF in soil. Mycorrhizae disrupt the uptake of the different heavy metals from the rhizosphere and movement from the root to the aerial parts. The major role of AMF in plant growth and development during stressful environments is to translocate important immovable nutrients like Cu, Zn and P and reducing metal toxicity in the host plant.
Scutellarin ameliorates pulmonary fibrosis through inhibiting NF-κB/NLRP3-mediated epithelial–mesenchymal transition and inflammation
Idiopathic pulmonary fibrosis (IPF) is featured with inflammation and extensive lung remodeling caused by overloaded deposition of extracellular matrix. Scutellarin is the major effective ingredient of breviscapine and its anti-inflammation efficacy has been reported before. Nevertheless, the impact of scutellarin on IPF and the downstream molecular mechanism remain unclear. In this study, scutellarin suppressed BLM-induced inflammation via NF-κB/NLRP3 pathway both in vivo and in vitro. BLM significantly elevated p-p65/p65 ratio, IκBα degradation, and levels of NLRP3, caspase-1, caspase-11, ASC, GSDMD Nterm , IL-1β, and IL-18, while scutellarin reversed the above alterations except for that of caspase-11. Scutellarin inhibited BLM-induced epithelial–mesenchymal transition (EMT) process in vivo and in vitro. The expression levels of EMT-related markers, including fibronectin, vimentin, N-cadherin, matrix metalloproteinase 2 (MMP-2) and MMP-9, were increased in BLM group, and suppressed by scutellarin. The expression level of E-cadherin showed the opposite changes. However, overexpression of NLRP3 eliminated the anti-inflammation and anti-EMT functions of scutellarin in vitro. In conclusion, scutellarin suppressed inflammation and EMT in BLM-induced pulmonary fibrosis through NF-κB/NLRP3 signaling.
Mechanosensing by Gli1+ cells contributes to the orthodontic force‐induced bone remodelling
Objectives Gli1+ cells have received extensive attention in tissue homeostasis and injury mobilization. The aim of this study was to investigate whether Gli1+ cells respond to force and contribute to bone remodelling. Materials and methods We established orthodontic tooth movement (OTM) model to assess the bone response for mechanical force. The transgenic mice were utilized to label and inhibit Gli1+ cells, respectively. Additionally, mice that conditional ablate Yes‐associated protein (Yap) in Gli1+ cells were applied in the present study. The tooth movement and bone remodelling were analysed. Results We first found Gli1+ cells expressed in periodontal ligament (PDL). They were proliferated and differentiated into osteoblastic cells under tensile force. Next, both pharmacological and genetic Gli1 inhibition models were utilized to confirm that inhibition of Gli1+ cells led to arrest of bone remodelling. Furthermore, immunofluorescence staining identified classical mechanotransduction factor Yap expressed in Gli1+ cells and decreased after suppression of Gli1+ cells. Additionally, conditional ablation of Yap gene in Gli1+ cells inhibited the bone remodelling as well, suggesting Gli1+ cells are force‐responsive cells. Conclusions Our findings highlighted that Gli1+ cells in PDL directly respond to orthodontic force and further mediate bone remodelling, thus providing novel functional evidence in the mechanism of bone remodelling and first uncovering the mechanical responsive property of Gli1+ cells.
Physicochemical Properties of Plasma-Activated Water and Its Control Effects on the Quality of Strawberries
In this study, the effects of plasma-activated water (PAW), generated by dielectric barrier discharge cold plasma at the gas–liquid interface, on the quality of fresh strawberries during storage were investigated. The results showed that, with the prolongation of plasma treatment time, the pH of PAW declined dramatically and the electrical conductivity increased significantly. The active components, including NO2−, NO3−, H2O2, and O2−, accumulated gradually in PAW, whereas the concentration of O2− decreased gradually with the treatment time after 2 min. No significant changes were found in pH, firmness, color, total soluble solids, malondialdehyde, vitamin C, or antioxidant activity in the PAW-treated strawberries (p > 0.05). Furthermore, the PAW treatment delayed the quality deterioration of strawberries and extended their shelf life. Principal component analysis and hierarchical cluster analysis showed that the PAW 2 treatment group demonstrated the best prolonged freshness effect, with the highest firmness, total soluble solids, vitamin C, and DPPH radical scavenging activity, and the lowest malondialdehyde and ∆E* values, after 4 days of storage. It was concluded that PAW showed great potential for maintaining the quality of fresh fruits and extending their shelf life.
miR-21 deficiency inhibits osteoclast function and prevents bone loss in mice
MicroRNAs emerge as critical post-transcriptional regulators in bone metabolism. We have previously reported in vitro that miR-21 promotes osteogenesis, while studies have also revealed miR-21 as a regulator of osteoclastogenesis and a promoter of osteoclast differentiation in vitro . However, in vivo data are still lacking in identifying skeletal function of miR-21, particularly its effects on osteoporosis. Here, using miR-21 knockout (miR-21 −/− ) mice, we investigated effects of miR-21 on bone development, bone remodeling and bone loss. Unexpectedly, miR-21 −/− mice demonstrated normal skeletal phenotype in development and maintained osteoblastogenesis in vivo . Besides, miR-21 −/− mice showed increased receptor activator of nuclear factor κB ligand (RANKL) and decreased osteoprotegerin (OPG) through miR-21 targeting Sprouty 1 (Spry1). Nevertheless, interestingly, miR-21 deficiency promoted trabecular bone mass accrual physiologically. Furthermore, in pathological states, the protection of bone mass was prominent in miR-21 −/− mice. These skeletal effects were attributed to inhibition of bone resorption and osteoclast function by miR-21 deficiency through miR-21 targeting programmed cell death 4 (PDCD4), despite the existence of RANKL. As far as we know, this is the first in vivo evidence of a pro-osteoclastic microRNA. Together, these findings clarified function of miR-21 in bone metabolism, particularly uncovering osteo-protective potential of miR-21 inactivation in osteoporosis.
Molecular biomarkers for gestational diabetes mellitus and postpartum diabetes
Gestational diabetes mellitus (GDM) is a growing public health problem worldwide that threatens both maternal and fetal health. Identifying individuals at high risk for GDM and diabetes after GDM is particularly useful for early intervention and prevention of disease progression. In the last decades, a number of studies have used metabolomics, genomics, and proteomic approaches to investigate associations between biomolecules and GDM progression. These studies clearly demonstrate that various biomarkers reflect pathological changes in GDM. The established markers have potential use as screening and diagnostic tools in GDM and in postpartum diabetes research. In the present review, we summarize recent studies of metabolites, single-nucleotide polymorphisms, microRNAs, and proteins associated with GDM and its transition to postpartum diabetes, with a focus on their predictive value in screening and diagnosis.