Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
266
result(s) for
"Hu, Michele"
Sort by:
Challenges in the reproducibility of clinical studies with resting state fMRI: An example in early Parkinson's disease
by
Griffanti, Ludovica
,
Zamboni, Giovanna
,
Jenkinson, Mark
in
Aged
,
Artefact removal
,
Basal Ganglia - pathology
2016
Resting state fMRI (rfMRI) is gaining in popularity, being easy to acquire and with promising clinical applications. However, rfMRI studies, especially those involving clinical groups, still lack reproducibility, largely due to the different analysis settings. This is particularly important for the development of imaging biomarkers. The aim of this work was to evaluate the reproducibility of our recent study regarding the functional connectivity of the basal ganglia network in early Parkinson's disease (PD) (Szewczyk-Krolikowski et al., 2014). In particular, we systematically analysed the influence of two rfMRI analysis steps on the results: the individual cleaning (artefact removal) of fMRI data and the choice of the set of independent components (template) used for dual regression.
Our experience suggests that the use of a cleaning approach based on single-subject independent component analysis, which removes non neural-related sources of inter-individual variability, can help to increase the reproducibility of clinical findings. A template generated using an independent set of healthy controls is recommended for studies where the aim is to detect differences from a “healthy” brain, rather than an “average” template, derived from an equal number of patients and controls. While, exploratory analyses (e.g. testing multiple resting state networks) should be used to formulate new hypotheses, careful validation is necessary before promising findings can be translated into useful biomarkers.
•Reproducibility of clinical findings is crucial for imaging biomarker development.•We addressed the impact on reproducibility of different analysis settings in rfMRI.•ICA-based cleaning of rfMRI data increases reproducibility.•The effect of the template choice for dual regression is evaluated.
Journal Article
Serum neuronal exosomes predict and differentiate Parkinson’s disease from atypical parkinsonism
by
Katsikoudi, Antigoni
,
Evetts, Samuel
,
Berg, Daniela
in
Aged
,
Aged, 80 and over
,
Biomarkers - blood
2020
ObjectiveParkinson’s disease is characterised neuropathologically by α-synuclein aggregation. Currently, there is no blood test to predict the underlying pathology or distinguish Parkinson’s from atypical parkinsonian syndromes. We assessed the clinical utility of serum neuronal exosomes as biomarkers across the spectrum of Parkinson’s disease, multiple system atrophy and other proteinopathies.MethodsWe performed a cross-sectional study of 664 serum samples from the Oxford, Kiel and Brescia cohorts consisting of individuals with rapid eye movement sleep behavioural disorder, Parkinson’s disease, dementia with Lewy bodies, multiple system atrophy, frontotemporal dementia, progressive supranuclear palsy, corticobasal syndrome and controls. Longitudinal samples were analysed from Parkinson’s and control individuals. We developed poly(carboxybetaine-methacrylate) coated beads to isolate L1 cell adhesion molecule (L1CAM)-positive extracellular vesicles with characteristics of exosomes and used mass spectrometry or multiplexed electrochemiluminescence to measure exosomal proteins.ResultsMean neuron-derived exosomal α-synuclein was increased by twofold in prodromal and clinical Parkinson’s disease when compared with multiple system atrophy, controls or other neurodegenerative diseases. With 314 subjects in the training group and 105 in the validation group, exosomal α-synuclein exhibited a consistent performance (AUC=0.86) in separating clinical Parkinson’s disease from controls across populations. Exosomal clusterin was elevated in subjects with non-α-synuclein proteinopathies. Combined neuron-derived exosomal α-synuclein and clusterin measurement predicted Parkinson’s disease from other proteinopathies with AUC=0.98 and from multiple system atrophy with AUC=0.94. Longitudinal sample analysis showed that exosomal α-synuclein remains stably elevated with Parkinson’s disease progression.ConclusionsIncreased α-synuclein egress in serum neuronal exosomes precedes the diagnosis of Parkinson’s disease, persists with disease progression and in combination with clusterin predicts and differentiates Parkinson’s disease from atypical parkinsonism.
Journal Article
From mechanisms to future therapy: a synopsis of isolated REM sleep behavior disorder as early synuclein-related disease
by
Postuma, Ronald B.
,
Iranzo, Alex
,
Peever, John
in
alpha-Synuclein - metabolism
,
Animals
,
Atrophy
2025
Parkinson disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy are synucleinopathies, characterized by neuronal loss, gliosis and the abnormal deposition of α-synuclein in vulnerable areas of the nervous system. Neurodegeneration begins however several years before clinical onset of motor, cognitive or autonomic symptoms. The isolated form of REM sleep behavior disorder (RBD), a parasomnia with dream enactment behaviors and excessive muscle activity during REM sleep, is an early stage synucleinopathy. The neurophysiological hallmark of RBD is REM sleep without atonia (RWSA), i.e. the loss of physiological muscle atonia during REM sleep. RBD pathophysiology is not fully clarified yet, but clinical and basic science suggest that ɑ-syn pathology begins in the lower brainstem where REM atonia circuits are located, including the sublaterodorsal tegmental/subcoeruleus nucleus and the ventral medulla, then propagates rostrally to brain regions such as the substantia nigra, limbic system, cortex. Genetically, there is only a partial overlap between RBD, PD and DLB, and individuals with iRBD may represent a specific subpopulation. A genome-wide association study identified five loci, which all seem to revolve around the
GBA1
pathway. iRBD patients often show subtle motor, cognitive, autonomic and/or sensory signs, neuroimaging alterations as well as biofluid and tissue markers of neurodegeneration (in particular pathologic α-synuclein aggregates), which can be useful for risk stratification. Patients with iRBD represent thus the ideal population for neuroprotective/neuromodulating trials. This review provides insights into these aspects, highlighting and substantiating the central role of iRBD in treatment development strategies for synucleinopathies.
Journal Article
Spectrum of impulse control behaviours in Parkinson’s disease: pathophysiology and management
by
Kelly, Mark John
,
Baig, Fahd
,
Hu, Michele Tao-Ming
in
Behavior
,
Caregivers
,
Clinical medicine
2020
Impulse control behaviours (ICBs) are a range of behaviours linked by their reward-based, repetitive natures. They can be precipitated in Parkinson’s disease (PD) by dopamine replacement therapy, often with detrimental consequences for patients and caregivers. While now a well-recognised non-motor feature of treated PD, much remains unknown about the influence of risk factors, pathophysiological mechanisms, vulnerability factors for specific types of behaviour and the optimal management strategies. Imaging studies have identified structural and functional changes in striatal and prefrontal brain regions, among others. Gene association studies indicate a role for genetic predisposition to PD-ICB. Clinical observational studies have identified potential modifiable and non-modifiable risk factors. Psychological studies shed light on the neurocognitive domains implicated in PD-ICBs and identify psychosocial determinants that may perpetuate the cycle of impulsive and harm-avoidance behaviours. Based on these results, a range of pharmacological and non-pharmacological management strategies have been trialled in PD-ICBs with varying success. The purpose of this review is to update clinicians on the evidence around the pathophysiology of PD-ICB. We aim to translate our findings into an interpretable biopsychosocial model that can be applied to the clinical assessment and management of individual cases of PD-ICB.
Journal Article
Developing and validating Parkinson’s disease subtypes and their motor and cognitive progression
2018
ObjectivesTo use a data-driven approach to determine the existence and natural history of subtypes of Parkinson’s disease (PD) using two large independent cohorts of patients newly diagnosed with this condition.Methods1601 and 944 patients with idiopathic PD, from Tracking Parkinson’s and Discovery cohorts, respectively, were evaluated in motor, cognitive and non-motor domains at the baseline assessment. Patients were recently diagnosed at entry (within 3.5 years of diagnosis) and were followed up every 18 months. We used a factor analysis followed by a k-means cluster analysis, while prognosis was measured using random slope and intercept models.ResultsWe identified four clusters: (1) fast motor progression with symmetrical motor disease, poor olfaction, cognition and postural hypotension; (2) mild motor and non-motor disease with intermediate motor progression; (3) severe motor disease, poor psychological well-being and poor sleep with an intermediate motor progression; (4) slow motor progression with tremor-dominant, unilateral disease. Clusters were moderately to substantially stable across the two cohorts (kappa 0.58). Cluster 1 had the fastest motor progression in Tracking Parkinson’s at 3.2 (95% CI 2.8 to 3.6) UPDRS III points per year while cluster 4 had the slowest at 0.6 (0.1–1.1). In Tracking Parkinson’s, cluster 2 had the largest response to levodopa 36.3% and cluster 4 the lowest 28.8%.ConclusionsWe have found four novel clusters that replicated well across two independent early PD cohorts and were associated with levodopa response and motor progression rates. This has potential implications for better understanding disease pathophysiology and the relevance of patient stratification in future clinical trials.
Journal Article
REM sleep behaviour disorder is associated with worse quality of life and other non-motor features in early Parkinson's disease
2014
Background Concomitant REM sleep behaviour disorder (RBD) is commonly observed in patients with Parkinson's disease (PD). Although the brainstem structures responsible for the symptoms of RBD correspond to the premotor stages of PD, the association of RBD with motor and non-motor features in early PD remains unclear. Methods The study evaluated 475 patients with PD within 3.5 years of diagnosis for the presence of probable RBD (pRBD) using the REM Sleep Behaviour Disorder Screening Questionnaire (RBDSQ). A neurologist and a trained research nurse carried out evaluation of each participant blinded to the results of the RBDSQ. Standardised rating scales for motor and non-motor features of PD, as well as health-related quality of life measures, were assessed. Multiple linear and logistic regression analyses were used to determine the relationship between pRBD and a variety of outcomes, controlling for confounding factors. Results The overall frequency of pRBD was 47.2% (95% CI 42.7% to 51.9%). None of the patients had a previous diagnosis of RBD. Patients with PD and concomitant pRBD did not differ on motor phenotype and scored comparably on the objective motor scales, but reported problems with motor aspects of daily living more frequently. Adjusted for age, sex, disease duration and smoking history, pRBD was associated with greater sleepiness (p=0.001), depression (p=0.001) and cognitive impairment (p=0.006). Conclusions pRBD is common and under-recognised in early PD. It is associated with increased severity and frequency of non-motor features, poorer subjective motor performance and a greater impact on health-related quality of life.
Journal Article
Alpha‐synuclein RT‐QuIC in the CSF of patients with alpha‐synucleinopathies
by
Pal, Suvankar
,
Neumann, Juliane
,
Green, Alison J. E.
in
Brief Communication
,
Brief Communications
2016
We have developed a novel real‐time quaking‐induced conversion RT‐QuIC‐based assay to detect alpha‐synuclein aggregation in brain and cerebrospinal fluid from dementia with Lewy bodies and Parkinson's disease patients. This assay can detect alpha‐synuclein aggregation in Dementia with Lewy bodies and Parkinson's disease cerebrospinal fluid with sensitivities of 92% and 95%, respectively, and with an overall specificity of 100% when compared to Alzheimer and control cerebrospinal fluid. Patients with neuropathologically confirmed tauopathies (progressive supranuclear palsy; corticobasal degeneration) gave negative results. These results suggest that RT‐QuiC analysis of cerebrospinal fluid is potentially useful for the early clinical assessment of patients with alpha‐synucleinopathies.
Journal Article
Prodromal Parkinsonism and Neurodegenerative Risk Stratification in REM Sleep Behavior Disorder
by
Evetts, Samuel
,
Dennis, Gary
,
Lo, Christine
in
Aged
,
Antidepressive Agents - pharmacology
,
Anxiety
2017
Rapid eye movement (REM) sleep behavior disorder (RBD) is the most specific marker of prodromal alpha-synucleinopathies. We sought to delineate the baseline clinical characteristics of RBD and evaluate risk stratification models.
Clinical assessments were performed in 171 RBD, 296 control, and 119 untreated Parkinson's (PD) participants. Putative risk measures were assessed as predictors of prodromal neurodegeneration, and Movement Disorders Society (MDS) criteria for prodromal PD were applied. Participants were screened for common leucine-rich repeat kinase 2 (LRRK2)/glucocerebrosidase gene (GBA) gene mutations.
Compared to controls, participants with RBD had higher rates of solvent exposure, head injury, smoking, obesity, and antidepressant use. GBA mutations were more common in RBD, but no LRRK2 mutations were found. RBD participants performed significantly worse than controls on Unified Parkinson's Disease Rating Scale (UPDRS)-III, timed \"get-up-and-go\", Flamingo test, Sniffin Sticks, and cognitive tests and had worse measures of constipation, quality of life (QOL), and orthostatic hypotension. For all these measures except UPDRS-III, RBD and PD participants were equally impaired. Depression, anxiety, and apathy were worse in RBD compared to PD participants. Stratification of people with RBD according to antidepressant use, obesity, and age altered the odds ratio (OR) of hyposmia compared to controls from 3.4 to 45.5. 74% (95% confidence interval [CI] 66%, 80%) of RBD participants met the MDS criteria for probable prodromal Parkinson's compared to 0.3% (95% CI 0.009%, 2%) of controls.
RBD are impaired across a range of clinical measures consistent with prodromal PD and suggestive of a more severe nonmotor subtype. Clinical risk stratification has the potential to select higher risk patients for neuroprotective interventions.
Journal Article
Biomarkers of conversion to α-synucleinopathy in isolated rapid-eye-movement sleep behaviour disorder
by
Lee, Jee-Young
,
Adler, Charles H
,
Dušek, Petr
in
alpha-Synuclein
,
Artificial intelligence
,
Atrophy
2021
Patients with isolated rapid-eye-movement sleep behaviour disorder (RBD) are commonly regarded as being in the early stages of a progressive neurodegenerative disease involving α-synuclein pathology, such as Parkinson's disease, dementia with Lewy bodies, or multiple system atrophy. Abnormal α-synuclein deposition occurs early in the neurodegenerative process across the central and peripheral nervous systems and might precede the appearance of motor symptoms and cognitive decline by several decades. These findings provide the rationale to develop reliable biomarkers that can better predict conversion to clinically manifest α-synucleinopathies. In addition, biomarkers of disease progression will be essential to monitor treatment response once disease-modifying therapies become available, and biomarkers of disease subtype will be essential to enable prediction of which subtype of α-synucleinopathy patients with isolated RBD might develop.
Journal Article
Prodromal dementia with Lewy bodies in REM sleep behavior disorder: A multicenter study
by
Arnaldi, Dario
,
Ferini‐Strambi, Luigi
,
De Cock, Valérie Cochen
in
Attention
,
Behavior disorders
,
Chronic illnesses
2024
INTRODUCTION Isolated/idiopathic rapid eye movement sleep behavior disorder (iRBD) is a powerful early predictor of dementia with Lewy bodies (DLB) and Parkinson's disease (PD). This provides an opportunity to directly observe the evolution of prodromal DLB and to identify which cognitive variables are the strongest predictors of evolving dementia. METHODS IRBD participants (n = 754) from 10 centers of the International RBD Study Group underwent annual neuropsychological assessment. Competing risk regression analysis determined optimal predictors of dementia. Linear mixed‐effect models determined the annual progression of neuropsychological testing. RESULTS Reduced attention and executive function, particularly performance on the Trail Making Test Part B, were the strongest identifiers of early DLB. In phenoconverters, the onset of cognitive decline began up to 10 years prior to phenoconversion. Changes in verbal memory best differentiated between DLB and PD subtypes. DISCUSSION In iRBD, attention and executive dysfunction strongly predict dementia and begin declining several years prior to phenoconversion. Highlights Cognitive decline in iRBD begins up to 10 years prior to phenoconversion. Attention and executive dysfunction are the strongest predictors of dementia in iRBD. Decline in episodic memory best distinguished dementia‐first from parkinsonism‐first phenoconversion.
Journal Article