Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Series Title
      Series Title
      Clear All
      Series Title
  • Reading Level
      Reading Level
      Clear All
      Reading Level
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Content Type
    • Item Type
    • Is Full-Text Available
    • Subject
    • Publisher
    • Source
    • Donor
    • Language
    • Place of Publication
    • Contributors
    • Location
22,533 result(s) for "Hu, Xiao"
Sort by:
Lung transplantation as therapeutic option in acute respiratory distress syndrome for coronavirus disease 2019-related pulmonary fibrosis
Critical patients with the coronavirus disease 2019 (COVID-19), even those whose nucleic acid test results had turned negative and those receiving maximal medical support, have been noted to progress to irreversible fatal respiratory failure. Lung transplantation (LT) as the sole therapy for end-stage pulmonary fibrosis related to acute respiratory distress syndrome has been considered as the ultimate rescue therapy for these patients. From February 10 to March 10, 2020, three male patients were urgently assessed and listed for transplantation. After conducting a full ethical review and after obtaining assent from the family of the patients, we performed three LT procedures for COVID-19 patients with illness durations of more than one month and extremely high sequential organ failure assessment scores. Two of the three recipients survived post-LT and started participating in a rehabilitation program. Pearls of the LT team collaboration and perioperative logistics were summarized and continually improved. The pathological results of the explanted lungs were concordant with the critical clinical manifestation, and provided insight towards better understanding of the disease. Government health affair systems, virology detection tools, and modern communication technology all play key roles towards the survival of the patients and their rehabilitation. LT can be performed in end-stage patients with respiratory failure due to COVID-19-related pulmonary fibrosis. If confirmed positive-turned-negative virology status without organ dysfunction that could contraindicate LT, LT provided the final option for these patients to avoid certain death, with proper protection of transplant surgeons and medical staffs. By ensuring instant seamless care for both patients and medical teams, the goal of reducing the mortality rate and salvaging the lives of patients with COVID-19 can be attained.
The relationship between job satisfaction, work stress, work–family conflict, and turnover intention among physicians in Guangdong, China: a cross-sectional study
ObjectiveTo investigate the relationship between job satisfaction, work stress, work–family conflict and turnover intention, and explore factors associated with turnover intention, among physicians in Guangdong Province, China.MethodsFrom August to October 2013, physicians completed questionnaires and scales with regard to their job satisfaction, work stress, work–family conflict, and turnover intention. Binary logistic regression and structural equation modelling (SEM) were used in data analysis.ResultsA total of 3963 physicians were approached, with 3563 completing the questionnaire. The mean score of the overall perception of turnover intention of physicians who worked in Guangdong was 2.71 on a scale ranging from 1 to 6. Hours worked per week, working in an urban/rural area, type of institution, and age significantly impacted on turnover intention. Turnover intention was directly and negatively related to job satisfaction, and it was directly, indirectly and positively related to work stress and work–family conflict.ConclusionJob satisfaction, work stress, work–family conflict, hours worked per week, working in an urban/rural area, types of institution and age are influencing factors of turnover intention. Reducing working hours, raising salary, providing more opportunities for career development and training, supporting and encouraging physicians by senior managers could potentially contribute to the reduction in turnover intention.
Warm/cool-tone switchable thermochromic material for smart windows by orthogonally integrating properties of pillar6arene and ferrocene
Functional materials play a vital role in the fabrication of smart windows, which can provide a more comfortable indoor environment for humans to enjoy a better lifestyle. Traditional materials for smart windows tend to possess only a single functionality with the purpose of regulating the input of solar energy. However, different color tones also have great influences on human emotions. Herein, a strategy for orthogonal integration of different properties is proposed, namely the thermo-responsiveness of ethylene glycol-modified pillar[6]arene ( EGP6 ) and the redox-induced reversible color switching of ferrocene/ferrocenium groups are orthogonally integrated into one system. This gives rise to a material with cooperative and non-interfering dual functions, featuring both thermochromism and warm/cool tone-switchability. Consequently, the obtained bifunctional material for fabricating smart windows can not only regulate the input of solar energy but also can provide a more comfortable color tone to improve the feelings and emotions of people in indoor environments. Materials for smart windows usually possess single functionality, thus developing materials that regulate solar energy whilst changing color to affect human emotion is desirable. Here the authors combine pillar[6]arenes and ferrocene/ferrocenium groups to produce warm/cool tone-switchable thermochromic materials.
Influence of Synoptic Sea-Breeze Fronts on the Urban Heat Island Intensity in Dallas–Fort Worth, Texas
When assessed using the difference between urban and rural air temperatures, the urban heat island (UHI) is most prominent during the nighttime. Typically, nocturnal UHI intensity is maintained throughout the night. The UHI intensity over Dallas–Fort Worth (DFW), Texas, however, experienced frequent “collapses” (sudden decreases) around midnight during August 2011, while the region was experiencing an intense heat wave. Observational and modeling studies were conducted to understand this unique phenomenon. Sea-breeze passage was found to be ultimately responsible for the collapses of the nocturnal UHI. Sea-breeze circulation developed along the coast of the Gulf of Mexico during the daytime. During the nighttime, the sea-breeze circulation was advected inland (as far as ~400 km) by the low-level jet-enhanced southerly flow, maintaining the characteristics of sea-breeze fronts, including the enhanced wind shear and vertical mixing. Ahead of the front, surface radiative cooling enhanced the near-surface temperature inversion in rural areas through the night with calm winds. During the frontal passage (around midnight at DFW), the enhanced vertical mixing at the leading edge of the fronts brought warmer air to the surface, leading to rural surface warming events. In contrast, urban effects led to a nearly neutral urban boundary layer. The enhanced mechanical mixing associated with sea-breeze fronts, therefore, did not increase urban surface temperature. The different responses to the sea-breeze frontal passages between rural (warming) and urban areas (no warming) led to the collapse of the UHI. The inland penetration of sea-breeze fronts at such large distances from the coast and their effects on UHI have not been documented in the literature.
Influenza infection elicits an expansion of gut population of endogenous Bifidobacterium animalis which protects mice against infection
Background Influenza is a severe respiratory illness that continually threatens global health. It has been widely known that gut microbiota modulates the host response to protect against influenza infection, but mechanistic details remain largely unknown. Here, we took advantage of the phenomenon of lethal dose 50 (LD 50 ) and metagenomic sequencing analysis to identify specific anti-influenza gut microbes and analyze the underlying mechanism. Results Transferring fecal microbes from mice that survive virulent influenza H7N9 infection into antibiotic-treated mice confers resistance to infection. Some gut microbes exhibit differential features to lethal influenza infection depending on the infection outcome. Bifidobacterium pseudolongum and Bifidobacterium animalis levels are significantly elevated in surviving mice when compared to dead or mock-infected mice. Oral administration of B. animalis alone or the combination of both significantly reduces the severity of H7N9 infection in both antibiotic-treated and germ-free mice. Functional metagenomic analysis suggests that B. animalis mediates the anti-influenza effect via several specific metabolic molecules. In vivo tests confirm valine and coenzyme A produce an anti-influenza effect. Conclusions These findings show that the severity of influenza infection is closely related to the heterogeneous responses of the gut microbiota. We demonstrate the anti-influenza effect of B. animalis , and also find that the gut population of endogenous B. animalis can expand to enhance host influenza resistance when lethal influenza infection occurs, representing a novel interaction between host and gut microbiota. Further, our data suggest the potential utility of Bifidobacterium in the prevention and as a prognostic predictor of influenza.
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning
The turnover number k cat , a measure of enzyme efficiency, is central to understanding cellular physiology and resource allocation. As experimental k cat estimates are unavailable for the vast majority of enzymatic reactions, the development of accurate computational prediction methods is highly desirable. However, existing machine learning models are limited to a single, well-studied organism, or they provide inaccurate predictions except for enzymes that are highly similar to proteins in the training set. Here, we present TurNuP, a general and organism-independent model that successfully predicts turnover numbers for natural reactions of wild-type enzymes. We constructed model inputs by representing complete chemical reactions through differential reaction fingerprints and by representing enzymes through a modified and re-trained Transformer Network model for protein sequences. TurNuP outperforms previous models and generalizes well even to enzymes that are not similar to proteins in the training set. Parameterizing metabolic models with TurNuP-predicted k cat values leads to improved proteome allocation predictions. To provide a powerful and convenient tool for the study of molecular biochemistry and physiology, we implemented a TurNuP web server. The turnover numbers of most enzyme-catalyzed reactions are unknown. Kroll et al. developed a general model that can predict turnover numbers even for enzymes dissimilar to those used for training, outperforming existing models.
Distribution of the COVID-19 epidemic and correlation with population emigration from Wuhan, China
The ongoing new coronavirus pneumonia (Corona Virus Disease 2019, COVID-19) outbreak is spreading in China, but it has not yet reached its peak. Five million people emigrated from Wuhan before lockdown, potentially representing a source of virus infection. Determining case distribution and its correlation with population emigration from Wuhan in the early stage of the epidemic is of great importance for early warning and for the prevention of future outbreaks. The official case report on the COVID-19 epidemic was collected as of January 30, 2020. Time and location information on COVID-19 cases was extracted and analyzed using ArcGIS and WinBUGS software. Data on population migration from Wuhan city and Hubei province were extracted from Baidu Qianxi, and their correlation with the number of cases was analyzed. The COVID-19 confirmed and death cases in Hubei province accounted for 59.91% (5806/9692) and 95.77% (204/213) of the total cases in China, respectively. Hot spot provinces included Sichuan and Yunnan, which are adjacent to Hubei. The time risk of Hubei province on the following day was 1.960 times that on the previous day. The number of cases in some cities was relatively low, but the time risk appeared to be continuously rising. The correlation coefficient between the provincial number of cases and emigration from Wuhan was up to 0.943. The lockdown of 17 cities in Hubei province and the implementation of nationwide control measures efficiently prevented an exponential growth in the number of cases. The population that emigrated from Wuhan was the main infection source in other cities and provinces. Some cities with a low number of cases showed a rapid increase in case load. Owing to the upcoming Spring Festival return wave, understanding the risk trends in different regions is crucial to ensure preparedness at both the individual and organization levels and to prevent new outbreaks.