Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
118 result(s) for "Hua, Ying-Peng"
Sort by:
Global Landscapes of the Na+/H+ Antiporter (NHX) Family Members Uncover their Potential Roles in Regulating the Rapeseed Resistance to Salt Stress
Soil salinity is a main abiotic stress in agriculture worldwide. The Na+/H+ antiporters (NHXs) play pivotal roles in intracellular Na+ excretion and vacuolar Na+ compartmentalization, which are important for plant salt stress resistance (SSR). However, few systematic analyses of NHXs has been reported in allotetraploid rapeseed so far. Here, a total of 18 full-length NHX homologs, representing seven subgroups (NHX1-NHX8 without NHX5), were identified in the rapeseed genome (AnAnCnCn). Number variations of BnaNHXs might indicate their significantly differential roles in the regulation of rapeseed SSR. BnaNHXs were phylogenetically divided into three evolutionary clades, and the members in the same subgroups had similar physiochemical characteristics, gene/protein structures, and conserved Na+ transport motifs. Darwin´s evolutionary pressure analysis suggested that BnaNHXs suffered from strong purifying selection. The cis-element analysis revealed the differential transcriptional regulation of NHXs between the model Arabidopsis and B. napus. Differential expression of BnaNHXs under salt stress, different nitrogen forms (ammonium and nitrate), and low phosphate indicated their potential involvement in the regulation of rapeseed SSR. Global landscapes of BnaNHXs will give an integrated understanding of their family evolution and molecular features, which will provide elite gene resources for the genetic improvement of plant SSR through regulating the NHX-mediated Na+ transport.
Combined morpho-physiological, ionomic and transcriptomic analyses reveal adaptive responses of allohexaploid wheat (Triticum aestivum L.) to iron deficiency
Background Plants worldwide are often stressed by low Fe availability around the world, especially in aerobic soils. Therefore, the plant growth, seed yield, and quality of crop species are severely inhibited under Fe deficiency. Fe metabolism in plants is controlled by a series of complex transport, storage, and regulatory mechanisms in cells. Allohexaploid wheat ( Triticum aestivum L.) is a staple upland crop species that is highly sensitive to low Fe stresses. Although some studies have been previously conducted on the responses of wheat plants to Fe deficiency, the key mechanisms underlying adaptive responses are still unclear in wheat due to its large and complex genome. Results Transmission electron microscopy showed that the chloroplast structure was severely damaged under Fe deficiency. Paraffin sectioning revealed that the division rates of meristematic cells were reduced, and the sizes of elongated cells were diminished. ICP-MS-assisted ionmics analysis showed that low-Fe stress significantly limited the absorption of nutrients, including N, P, K, Ca, Mg, Fe, Mn, Cu, Zn, and B nutrients. High-throughput transcriptome sequencing identified 378 and 2,619 genome-wide differentially expressed genes (DEGs) were identified in the shoots and roots between high-Fe and low-Fe conditions, respectively. These DEGs were mainly involved in the Fe chelator biosynthesis, ion transport, photosynthesis, amino acid metabolism, and protein synthesis. Gene coexpression network diagrams indicated that TaIRT1b-4A , TaNAS2-6D , TaNAS1a-6A , TaNAS1-6B, and TaNAAT1b-1D might function as key regulators in the adaptive responses of wheat plants to Fe deficiency. Conclusions These results might help us fully understand the morpho-physiological and molecular responses of wheat plants to low-Fe stress, and provide elite genetic resources for the genetic modification of efficient Fe use.
Genome-scale characterization of the vacuole nitrate transporter Chloride Channel (CLC) genes and their transcriptional responses to diverse nutrient stresses in allotetraploid rapeseed
The Chloride Channel (CLC) gene family is reported to be involved in vacuolar nitrate (NO3-) transport. Nitrate distribution to the cytoplasm is beneficial for enhancing NO3- assimilation and plays an important role in the regulation of nitrogen (N) use efficiency (NUE). In this study, genomic information, high-throughput transcriptional profiles, and gene co-expression analysis were integrated to identify the CLCs (BnaCLCs) in Brassica napus. The decreased NO3- concentration in the clca-2 mutant up-regulated the activities of nitrate reductase and glutamine synthetase, contributing to increase N assimilation and higher NUE in Arabidopsis thaliana. The genome-wide identification of 22BnaCLC genes experienced strong purifying selection. Segmental duplication was the major driving force in the expansion of the BnaCLC gene family. The most abundant cis-acting regulatory elements in the gene promoters, including DNA-binding One Zinc Finger, W-box, MYB, and GATA-box, might be involved in the transcriptional regulation of BnaCLCs expression. High-throughput transcriptional profiles and quantitative real-time PCR results showed that BnaCLCs responded differentially to distinct NO3- regimes. Transcriptomics-assisted gene co-expression network analysis identified BnaA7.CLCa-3 as the core member of the BnaCLC family, and this gene might play a central role in vacuolar NO3- transport in crops. The BnaCLC members also showed distinct expression patterns under phosphate depletion and cadmium toxicity. Taken together, our results provide comprehensive insights into the vacuolar BnaCLCs and establish baseline information for future studies on BnaCLCs-mediated vacuolar NO3- storage and its effect on NUE.
Genome-wide identification of the amino acid permease genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed
Background Nitrogen (N), referred to as a “life element”, is a macronutrient essential for optimal plant growth and yield production. Amino acid (AA) permease ( AAP ) genes play pivotal roles in root import, long-distance translocation, remobilization of organic amide-N from source organs to sinks, and other environmental stress responses. However, few systematic analyses of AAPs have been reported in Brassica napus so far. Results In this study, we identified a total of 34 full-length AAP genes representing eight subgroups ( AAP1–8 ) from the allotetraploid rapeseed genome (A n A n C n C n , 2 n  = 4 x  = 38). Great differences in the homolog number among the BnaAAP subgroups might indicate their significant differential roles in the growth and development of rapeseed plants. The BnaAAPs were phylogenetically divided into three evolutionary clades, and the members in the same subgroups had similar physiochemical characteristics, gene/protein structures, and conserved AA transport motifs. Darwin’s evolutionary analysis suggested that BnaAAPs were subjected to strong purifying selection pressure. Cis -element analysis showed potential differential transcriptional regulation of AAPs between the model Arabidopsis and B. napus . Differential expression of BnaAAPs under nitrate limitation, ammonium excess, phosphate shortage, boron deficiency, cadmium toxicity, and salt stress conditions indicated their potential involvement in diverse nutrient stress responses. Conclusions The genome-wide identification of BnaAAPs will provide a comprehensive insight into their family evolution and AAP-mediated AA transport under diverse abiotic stresses. The molecular characterization of core AAPs can provide elite gene resources and contribute to the genetic improvement of crop stress resistance through the modulation of AA transport.
Genome-wide identification of Brassicaceae B-BOX genes and molecular characterization of their transcriptional responses to various nutrient stresses in allotetraploid rapeseed
Background B-box ( BBX ) genes play important roles in plant growth regulation and responses to abiotic stresses. The plant growth and yield production of allotetraploid rapeseed is usually hindered by diverse nutrient stresses. However, no systematic analysis of Brassicaceae BBXs and the roles of BBXs in the regulation of nutrient stress responses have not been identified and characterized previously. Results In this study, a total of 536 BBXs were identified from nine brassicaceae species, including 32 AtBBXs , 66 BnaBBXs , 41 BoBBXs , 43 BrBBXs , 26 CrBBXs , 81 CsBBXs , 52 BnBBXs , 93 BjBBXs , and 102 BcBBXs . Syntenic analysis showed that great differences in the gene number of Brassicaceae BBXs might be caused by genome duplication. The BBXs were respectively divided into five subclasses according to their phylogenetic relationships and conserved domains, indicating their diversified functions. Promoter cis -element analysis showed that BBXs probably participated in diverse stress responses. Protein-protein interactions between BnaBBXs indicated their functions in flower induction. The expression profiles of BnaBBXs were investigated in rapeseed plants under boron deficiency, boron toxicity, nitrate limitation, phosphate shortage, potassium starvation, ammonium excess, cadmium toxicity, and salt stress conditions using RNA-seq data. The results showed that different BnaBBXs showed differential transcriptional responses to nutrient stresses, and some of them were simultaneously responsive to diverse nutrient stresses. Conclusions Taken together, the findings investigated in this study provided rich resources for studying Brassicaceae BBX gene family and enriched potential clues in the genetic improvement of crop stress resistance.
Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress
Background Soil salinization has become a global problem restricting the seed yield and quality of crops, including wheat ( Triticum aestivum L.). Salinity significantly alters plant morphology and severely disrupts physiological homeostasis. Salt tolerance of wheat has been widely studied whereas core ion transporters responsive to salt stress remain elusive. Results In this study, the wheat seedlings were subjected to salinity toxicity for morpho-physiological and transcriptomic analysis of wheat salt tolerance. There was a inversely proportional relationship between salt concentrations and morpho-physiological parameters. Under the condition of 100 mM NaCl, the H 2 O 2 , O 2 − , MDA content and membrane permeability were significantly increased whereas the chlorophyll content was markedly decreased. Under salt stress, a larger proportion of Na + was partitioned in the roots than in the shoots, which had a lower Na + /K + ratio and proline content. Salt stress also obviously affected the homeostasis of other cations. Genome-wide transcriptomic analysis showed that a total of 2,807 and 5,570 differentially expressed genes (DEGs) were identified in the shoots and roots, respectively. Functionality analysis showed that these DEGs were mainly enriched in the KEGG pathways related to carbon metabolism, phenylalanine, and amino acid biosynthesis, and were primarily enriched in the GO terms involving proline metabolism and redox processes. The Na + transporter genes were upregulated under salt stress, which repressed the gene expression of the K + transporters. Salt stress also significantly elevated the expression of the genes involved in osmoregulation substances biosynthesis, and obviously affected the expression profiling of other cation transporters. Co-expression network analysis identified TaNHX6-D5 / TaNHX4-B7 and TaP5CS2-B3 potentially as core members regulating wheat salt tolerance. Conclusions These results might help us fully understand the morpho-physiological and molecular responses of wheat seedlings to salt stress, and provide elite genetic resources for the genetic modification of wheat salt tolerance.
Genome-Wide Identification of the CAT Genes and Molecular Characterization of Their Transcriptional Responses to Various Nutrient Stresses in Allotetraploid Rapeseed
Brassica napus is an important oil crop in China and has a great demand for nitrogen nutrients. Cationic amino acid transporters (CAT) play a key role in amino acid absorption and transport in plants. However, the CATs family has not been reported in B. napus so far. In this study, genome-wide analysis identified 22 CAT members in the B. napus genome. Based on phylogenetic and synteny analysis, BnaCATs were classified into four groups (Group I–Group IV). The members in the same subgroups showed similar physiochemical characteristics and intron/exon and motif patterns. By evaluating cis-elements in the promoter regions, we identified some cis-elements related to hormones, stress and plant development. Darwin’s evolutionary analysis indicated that BnaCATs might have experienced strong purifying selection pressure. The BnaCAT family may have undergone gene expansion; the chromosomal location of BnaCATs indicated that whole-genome replication or segmental replication may play a major driving role. Differential expression patterns of BnaCATs under nitrate limitation, phosphate shortage, potassium shortage, cadmium toxicity, ammonium excess and salt stress conditions indicated that they were responsive to different nutrient stresses. In summary, these findings provide a comprehensive survey of the BnaCAT family and lay a foundation for the further functional analysis of family members.
Integrated physiologic, genomic and transcriptomic strategies involving the adaptation of allotetraploid rapeseed to nitrogen limitation
Background Nitrogen (N) is a macronutrient that is essential for optimal plant growth and seed yield. Allotetraploid rapeseed (A n A n C n C n , 2 n  = 4 x  = 38) has a higher requirement for N fertilizers whereas exhibiting a lower N use efficiency (NUE) than cereal crops. N limitation adaptation (NLA) is pivotal for enhancing crop NUE and reducing N fertilizer use in yield production. Therefore, revealing the genetic and molecular mechanisms underlying NLA is urgent for the genetic improvement of NUE in rapeseed and other crop species with complex genomes. Results In this study, we integrated physiologic, genomic and transcriptomic analyses to comprehensively characterize the adaptive strategies of oilseed rape to N limitation stresses. Under N limitations, we detected accumulated anthocyanin, reduced nitrate (NO 3 − ) and total N concentrations, and enhanced glutamine synthetase activity in the N-starved rapeseed plants. High-throughput transcriptomics revealed that the pathways associated with N metabolism and carbon fixation were highly over-represented. The expression of the genes that were involved in efficient N uptake, translocation, remobilization and assimilation was significantly altered. Genome-wide identification and molecular characterization of the microR827- NLA1 - NRT1.7 regulatory circuit indicated the crucial role of the ubiquitin-mediated post-translational pathway in the regulation of rapeseed NLA. Transcriptional analysis of the module genes revealed their significant functional divergence in response to N limitations between allotetraploid rapeseed and the model Arabidopsis. Association analysis in a rapeseed panel comprising 102 genotypes revealed that BnaC5.NLA1 expression was closely correlated with the rapeseed low-N tolerance. Conclusions We identified the physiologic and genome-wide transcriptional responses of oilseed rape to N limitation stresses, and characterized the global members of the BnamiR827- BnaNLA1s - BnaNRT1.7s regulatory circuit. The transcriptomics-assisted gene co-expression network analysis accelerates the rapid identification of central members within large gene families of plant species with complex genomes. These findings would enhance our comprehensive understanding of the physiologic responses, genomic adaptation and transcriptomic alterations of oilseed rape to N limitations and provide central gene resources for the genetic improvement of crop NLA and NUE.
Integrated ionomic and transcriptomic dissection reveals the core transporter genes responsive to varying cadmium abundances in allotetraploid rapeseed
Background Oilseed rape ( B. napus L.) has great potential for phytoremediation of cadmium (Cd)-polluted soils due to its large plant biomass production and strong metal accumulation. Soil properties and the presence of other soluble compounds or ions, cause a heterogeneous distribution of Cd. Results The aim of our study was to reveal the differential responses of B. napus to different Cd abundances. Herein, we found that high Cd (50 μM) severely inhibited the growth of B. napus , which was not repressed by low Cd (0.50 μM) under hydroponic culture system. ICP-MS assays showed that the Cd 2+ concentrations in both shoots and roots under 50 μM Cd were over 10 times higher than those under 0.50 μM Cd. Under low Cd, the concentrations of only shoot Ca 2+ /Mn 2+ and root Mn 2+ were obviously changed (both reduced); under high Cd, the concentrations of most cations assayed were significantly altered in both shoots and roots except root Ca 2+ and Mg 2+ . High-throughput transcriptomic profiling revealed a total of 18,021 and 1408 differentially expressed genes under high Cd and low Cd conditions, respectively. The biological categories related to the biosynthesis of plant cell wall components and response to external stimulus were over-accumulated under low Cd, whereas the terms involving photosynthesis, nitrogen transport and response, and cellular metal ion homeostasis were highly enriched under high Cd. Differential expression of the transporters responsible for Cd uptake ( NRAMPs ), transport ( IRTs and ZIPs ), sequestration ( HMAs , ABCs , and CAXs ), and detoxification ( MTPs , PCR , MTs , and PCSs ), and some other essential nutrient transporters were investigated, and gene co-expression network analysis revealed the core members of these Cd transporters. Some Cd transporter genes, especially NRAMPs and IRTs , showed opposite responsive patterns between high Cd and low Cd conditions. Conclusions Our findings would enrich our understanding of the interaction between essential nutrients and Cd, and might also provide suitable gene resources and important implications for the genetic improvement of plant Cd accumulation and resistance through molecular engineering of these core genes under varying Cd abundances in soils.
Genome-wide identification of Brassicaceae histone modification genes and their responses to abiotic stresses in allotetraploid rapeseed
Background Histone modification is an important epigenetic regulatory mechanism and essential for stress adaptation in plants. However, systematic analysis of histone modification genes ( HMs ) in Brassicaceae species is lacking, and their roles in response to abiotic stress have not yet been identified. Results In this study, we identified 102 AtHMs , 280 BnaHMs , 251 BcHMs , 251 BjHMs , 144 BnHMs , 155 BoHMs , 137 BrHMs , 122 CrHMs , and 356 CsHMs in nine Brassicaceae species, respectively. Their chromosomal locations, protein/gene structures, phylogenetic trees, and syntenies were determined. Specific domains were identified in several Brassicaceae HMs , indicating an association with diverse functions. Syntenic analysis showed that the expansion of Brassicaceae HMs may be due to segmental and whole-genome duplications. Nine key BnaHMs in allotetraploid rapeseed may be responsible for ammonium, salt, boron, cadmium, nitrate, and potassium stress based on co-expression network analysis. According to weighted gene co-expression network analysis (WGCNA), 12 BnaHMs were associated with stress adaptation. Among the above genes, BnaPRMT11 simultaneously responded to four different stresses based on differential expression analysis, while BnaSDG46 , BnaHDT10 , and BnaHDA1 participated in five stresses. BnaSDG46 was also involved in four different stresses based on WGCNA, while BnaSDG10 and BnaJMJ58 were differentially expressed in response to six different stresses. In summary, six candidate genes for stress resistance ( BnaPRMT11 , BnaSDG46 , BnaSDG10 , BnaJMJ58 , BnaHDT10 , and BnaHDA1 ) were identified. Conclusions Taken together, these findings help clarify the biological roles of Brassicaceae HMs . The identified candidate genes provide an important reference for the potential development of stress-tolerant oilseed plants.