Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
121 result(s) for "Huang, Chiu-Chen"
Sort by:
A common glycan structure on immunoglobulin G for enhancement of effector functions
Antibodies have been developed as therapeutic agents for the treatment of cancer, infection, and inflammation. In addition to binding activity toward the target, antibodies also exhibit effector-mediated activities through the interaction of the Fc glycan and the Fc receptors on immune cells. To identify the optimal glycan structures for individual antibodies with desired activity, we have developed an effective method to modify the Fc-glycan structures to a homogeneous glycoform. In this study, it was found that the biantennary N-glycan structure with two terminal alpha-2,6-linked sialic acids is a common and optimized structure for the enhancement of antibody-dependent cell-mediated cytotoxicity, complement-dependent cytotoxicity, and antiinflammatory activities.
Lychee Seed Extract Targets Proliferation, Differentiation, and Cell Cycle Proteins to Suppress Human Colorectal Tumor Growth in Xenograft Models
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by colorimetric assays and HPLC to quantify the phytochemical composition. Nude mice bearing HT-29 or SW480 xenografts were orally administered LCSE (0.1 or 0.6 g/kg) daily for 14 days. Tumor volume was measured, and immunohistochemistry was used to assess EGFR, p21, p53, Ki-67, CEA, CK20, CDX2, and Bax expression. Phytochemical profiling demonstrated LCSE contains abundant phenolics and flavonoids, with gallic acid as a predominant constituent, underscoring the potential bioactive properties. LCSE significantly inhibited tumor growth in HT-29 xenografts and dose-dependently reduced EGFR, p21, p53, cell cycle proteins and proliferation/differentiation markers. In SW480 tumors, inhibitory effects were evident primarily at the higher dose, with limited reduction in p53 expression. Bax levels remained unchanged in both models, indicating a non-apoptotic mechanism. No systemic toxicity was observed in treated mice. LCSE exhibits dose-dependent anti-tumor activity in CRC xenografts, likely mediated through suppression of proliferation and modulation of key regulatory proteins rather than apoptosis. These findings support LCSE as a safe, multi-target botanical candidate for CRC intervention and justify further mechanistic and translational studies.
Tocilizumab Exerts Anti-Tumor Effects on Colorectal Carcinoma Cell Xenografts Corresponding to Expression Levels of Interleukin-6 Receptor
The use of tocilizumab against the interleukin-6 receptor (IL-6R) has been demonstrated as inhibiting the progression of diverse cancers in vitro and in vivo. Nonetheless, evidence regarding the anti-tumor effects of tocilizumab on human colorectal carcinoma (CRC) corresponding to IL-6R expression levels remains scarce. To investigate the influence of IL-6R expression, SW480 and HT-29 cells inoculated subcutaneously into NU/NU mice were used as human CRC xenograft models with anti-IL-6R antibody (tocilizumab) therapy. The IL-6R expression levels, histology of CRC growth/invasiveness, and tumor growth-related signaling pathway were estimated by H&E and immunohistochemical staining. SW480 tumor cells with higher IL-6R expression levels showed better responsiveness in tocilizumab therapy than in the treated HT-29 group. Likewise, therapeutic effects of tocilizumab on the proliferative ability with mitotic index and Ki-67 expressions, invasiveness with MMP-9 proteinase expressions, and ERK 1/2 and STAT3 signaling transduction in the SW480 treatment group were superior to the HT-29 treatment group. In light of our results, IL-6R is the key indicator for the efficacy of tocilizumab treatment in CRC xenografts. From the perspective of precision medicine, tumor response to anti-IL-6R antibody therapy could be predicted on the basis of IL-6R expression levels. In this manner, tocilizumab may serve as a targeted and promising anti-CRC therapy.
Cobalt Protoporphyrin Downregulates Hyperglycemia-Induced Inflammation and Enhances Mitochondrial Respiration in Retinal Pigment Epithelial Cells
Diabetic retinopathy is characterized by hyperglycemic retinal pigment epithelial cells that secrete excessive pro-inflammatory cytokines and VEGF, leading to retinal damage and vision loss. Cobalt protoporphyrin (CoPP) is a compound that can reduce inflammatory responses by inducing high levels of HO-1. In the present study, the therapeutic effects of CoPP were examined in ARPE-19 cells under hyperglycemia. ARPE-19 cells were incubated in culture media containing either 5.5 mM (NG) or 25 mM (HG) glucose, with or without the addition of 0.1 µM CoPP. Protein expressions in samples were determined by either Western blotting or immunostaining. A Seahorse metabolic analyzer was used to assess the impact of CoPP treatment on mitochondrial respiration in ARPE-19 cells in NG or HG media. ARPE-19 cells cultured in NG media displayed different cell morphology than those cultured in HG media. CoPP treatment induced high HO-1 expressions and significantly enhanced the viability of ARPE-19 cells under hyperglycemia. Moreover, CoPP significantly downregulated expressions of inflammatory and apoptotic markers and significantly upregulated mitochondrial respiration in APRPE-19 cells under hyperglycemia. CoPP treatment significantly enhanced cell viability in ARPE-19 cells under hyperglycemia. The treatment also downregulated the expressions of pro-inflammatory and upregulated mitochondrial respiration in the hyperglycemic cells.
The Pathogenicity of Shewanella algae and Ability to Tolerate a Wide Range of Temperatures and Salinities
Shewanella algae is a rod-shaped Gram-negative marine bacterium frequently found in nonhuman sources such as aquatic ecosystems and has been shown to be the pathogenic agent in various clinical cases due to the ingestion of raw seafood. The results of this study showed that S. algae was present in approximately one in four samples, including water and shellfish samples. Positive reactions (API systems) in S. algae strains were seen for gelatinase (gelatin); however, negative reactions were found for indole production (tryptophan). S. algae is adapted to a wide range of temperatures (4°C, 25°C, 37°C, and 42°C) and salinity. Temperature is a key parameter in the pathogenicity of S. algae as it appears to induce hemolysis at 25°C and 37°C. S. algae exhibits pathogenic characteristics at widely varying temperatures, which suggests that it may have the ability to adapt to climate change.
Antibody to Interleukin-6 Receptor Inhibits In Vivo Growth of Human Colorectal Carcinoma Cell Xenografts
Background: Interleukin-6 receptor antibody (IL6R) inhibits colony formation and invasion by colorectal carcinoma (CRC) in vitro. We examined the effect of IL6R antibody on tumor growth of CRC xenografts in vivo. Materials and Methods: SW480 cells inoculated subcutaneously into NU/NU mice were treated with anti-IL6R and tumor histology and growth-related signaling were subsequently estimated by hematoxylin and eosin and immunohistochemical staining. Results: Tumor growth was inhibited by anti-IL6R treatment at dosages of both 0.1 and 1.0 mg/kg. Tumor cells had invaded into surrounding tissues in untreated mice, while there was no invasion of tumors in the IL6R antibody-treated mice. The expression of Ki-67, signal transducer and activator of transcription protein 3 (STAT3) and phosphor-extracellular signal-regulated kinase 1 and 2 (ERK1/2) were suppressed in anti-IL6R-treated tumors. Conclusion: IL6R antibody inhibited tumor growth and invasiveness in vivo by suppressing the expression of Ki-67, STAT3 and phosphor-ERK1/2. The results imply that the anti-IL6R may be a promising targeted drug for CRC.
Reevaluation of Hemoparasites in the Black Spiny-Tailed Iguana (Ctenosaura similis) with the First Pathological and Molecular Characterizations of Lankesterella desseri n. sp. and Redescription of Hepatozoon gamezi
Hemoprotozoa are microorganisms that parasitize the blood and possess intricate life cycles. Despite the complexity of their nature, little is known about the biology of hemoprotozoa in reptilian hosts. In this study, we conducted disease surveillance on blood samples collected from six black spiny-tailed iguanas (Ctenosaura similis) exhibiting clinical signs. We found two different types of hemoparasites in the blood films and further confirmed they belong to the genera Lakesterella and Hepatozoon through molecular methods. In the tissue section from a dead iguana infected only with Lakesterella sp., parasites were also found in melanomacrophages of the liver and kidney. Since Lakesterella sp. infection has not been reported in C. similis, we propose this hemococcidian as a new species, Lankesterella desseri n. sp. The Hepatozoon parasites discovered in this study were classified as Hepatozoon gamezi based on their morphological characteristics, particularly the notable deformation of all infected erythrocytes, and this classification was further corroborated through molecular biological and phylogenetic analyses. This is the first hemoprotozoa investigation in C. similis with pathological and molecular characterization of these pathogens. We suggest that more studies are needed to understand the epidemiology, transmission, and impact of these parasites on their hosts and ecosystems.
Induction of Apoptosis and Cell Cycle Arrest in Human Colorectal Carcinoma by Litchi Seed Extract
The Litchi (Litchi chinensis) fruit products possess rich amounts of flavanoids and proanthocyanidins. Its pericarp has been shown to inhibit breast and liver cancer cell growth. However, the anticolorectal cancer effect of Litchi seed extract has not yet been reported. In this study, the effects of polyphenol-rich Litchi seed ethanol extract (LCSP) on the proliferation, cell cycle, and apoptosis of two colorectal cancer cell lines Colo320DM and SW480 were examined. The results demonstrated that LCSP significantly induced apoptotic cell death in a dose-dependent manner and arrested cell cycle in G2/M in colorectal carcinoma cells. LCSP also suppressed cyclins and elevated the Bax : Bcl-2 ratio and caspase 3 activity. This study provides in vitro evidence that LCSP serves as a potential chemopreventive agent for colorectal cancer.
Litchi seed extract inhibits epidermal growth factor receptor signaling and growth of Two Non-small cell lung carcinoma cells
Background Litchi seeds possess rich amounts of phenolics and have been shown to inhibit proliferation of several types of cancer cells. However, the suppression of EGFR signaling in non-small cell lung cancer (NSCLC) by litchi seed extract (LCSE) has not been fully understood. Methods In this study, the effects of LCSE on EGFR signaling, cell proliferation, the cell cycle and apoptosis in A549 adenocarcinoma cells and NCI- H661 large-cell carcinoma cells were examined. Results The results demonstrated that LCSE potently reduced the number of cancer cells and induced growth inhibition, cell-cycle arrest in the G1 or G2/M phase, and apoptotic death in the cellular experiment. Only low cytotoxicity effect was noted in normal lung MRC-5 cells. LCSE also suppressed cyclins and Bcl-2 and elevated Kip1/p27, Bax and caspase 8, 9 and 3 activities, which are closely associated with the downregulation of EGFR and its downstream Akt and Erk-1/-2 signaling. Conclusion The results implied that LCSE suppressed EGFR signaling and inhibited NSCLC cell growth. This study provided in vitro evidence that LCSE could serve as a potential agent for the adjuvant treatment of NSCLC.
Prevalence of gastrointestinal parasites in yellow cattle between Taiwan and its offshore islands
A total of 310 fecal samples of yellow cattle were collected in Taiwan and its offshore islands Penghu and Kinmen for gastrointestinal parasite examination using coprological techniques. The overall prevalence was 73.2%. The infection rates of protozoa, nematodes, trematodes, and cestodes were 57.7%, 37.7%, 17.1%, and 0.6%, respectively. Among all parasites, Cryptosporidium spp. (41.6%) were the most predominant, followed by strongyles (36.1%) and Eimeria spp. (11.9%). There were significant differences in the prevalence of protozoa and nematodes between different distributional area groups. The present study demonstrates that gastrointestinal parasitic infections, particularly protozoan infections, occur frequently in yellow cattle in Taiwan and its offshore islands. The results indicate that superior management systems and regular anthelmintic treatments should be performed for the control of parasitic infections on yellow-cattle farms.