Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectCountry Of PublicationPublisherSourceTarget AudienceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
21,046
result(s) for
"Huang, Xin"
Sort by:
The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019
2021
Land cover (LC) determines the energy exchange, water and carbon cycle between Earth's spheres. Accurate LC information is a fundamental parameter for the environment and climate studies. Considering that the LC in China has been altered dramatically with the economic development in the past few decades, sequential and fine-scale LC monitoring is in urgent need. However, currently, fine-resolution annual LC dataset produced by the observational images is generally unavailable for China due to the lack of sufficient training samples and computational capabilities. To deal with this issue, we produced the first Landsat-derived annual China land cover dataset (CLCD) on the Google Earth Engine (GEE) platform, which contains 30 m annual LC and its dynamics in China from 1990 to 2019. We first collected the training samples by combining stable samples extracted from China's land-use/cover datasets (CLUDs) and visually interpreted samples from satellite time-series data, Google Earth and Google Maps. Using 335 709 Landsat images on the GEE, several temporal metrics were constructed and fed to the random forest classifier to obtain classification results. We then proposed a post-processing method incorporating spatial–temporal filtering and logical reasoning to further improve the spatial–temporal consistency of CLCD. Finally, the overall accuracy of CLCD reached 79.31 % based on 5463 visually interpreted samples. A further assessment based on 5131 third-party test samples showed that the overall accuracy of CLCD outperforms that of MCD12Q1, ESACCI_LC, FROM_GLC and GlobeLand30. Besides, we intercompared the CLCD with several Landsat-derived thematic products, which exhibited good consistencies with the Global Forest Change, the Global Surface Water, and three impervious surface products. Based on the CLCD, the trends and patterns of China's LC changes during 1985 and 2019 were revealed, such as expansion of impervious surface (+148.71 %) and water (+18.39 %), decrease in cropland (−4.85 %) and grassland (−3.29 %), and increase in forest (+4.34 %). In general, CLCD reflected the rapid urbanization and a series of ecological projects (e.g. Gain for Green) in China and revealed the anthropogenic implications on LC under the condition of climate change, signifying its potential application in the global change research. The CLCD dataset introduced in this article is freely available at https://doi.org/10.5281/zenodo.4417810 (Yang and Huang, 2021).
Journal Article
Ultrarobust, tough and highly stretchable self-healing materials based on cartilage-inspired noncovalent assembly nanostructure
by
Wang, Yuyan
,
Huang, Xin
,
Zhang, Xinxing
in
639/301/357/537
,
639/301/923/1028
,
639/638/455/303
2021
Self-healing materials integrated with excellent mechanical strength and simultaneously high healing efficiency would be of great use in many fields, however their fabrication has been proven extremely challenging. Here, inspired by biological cartilage, we present an ultrarobust self-healing material by incorporating high density noncovalent bonds at the interfaces between the dentritic tannic acid-modified tungsten disulfide nanosheets and polyurethane matrix to collectively produce a strong interfacial interaction. The resultant nanocomposite material with interwoven network shows excellent tensile strength (52.3 MPa), high toughness (282.7 MJ m
‒3
, which is 1.6 times higher than spider silk and 9.4 times higher than metallic aluminum), high stretchability (1020.8%) and excellent healing efficiency (80–100%), which overturns the previous understanding of traditional noncovalent bonding self-healing materials where high mechanical robustness and healing ability are mutually exclusive. Moreover, the interfacical supramolecular crosslinking structure enables the functional-healing ability of the resultant flexible smart actuation devices. This work opens an avenue toward the development of ultrarobust self-healing materials for various flexible functional devices.
Strong self-healing materials with high healing efficiency are of great use in many fields but their fabrication is extremely challenging. Here, the authors present a robust self-healing material by incorporating high density noncovalent bonds at the interfaces between dentritic tannic acid-modified tungsten disulfide nanosheets and a polyurethane matrix to collectively produce a strong interfacial interaction.
Journal Article
Blowup equations for refined topological strings
by
Sun, Kaiwen
,
Huang, Min-xin
,
Wang, Xin
in
Classical and Quantum Gravitation
,
Differential and Algebraic Geometry
,
Elementary Particles
2018
A
bstract
Göttsche-Nakajima-Yoshioka K-theoretic blowup equations characterize the Nekrasov partition function of five dimensional
N
=
1
supersymmetric gauge theories compactified on a circle, which via geometric engineering correspond to the refined topological string theory on SU(
N
) geometries. In this paper, we study the K-theoretic blowup equations for general local Calabi-Yau threefolds. We find that both vanishing and unity blowup equations exist for the partition function of refined topological string, and the crucial ingredients are the
r
fields introduced in our previous paper. These blowup equations are in fact the functional equations for the partition function and each of them results in infinite identities among the refined free energies. Evidences show that they can be used to determine the full refined BPS invariants of local Calabi-Yau threefolds. This serves an independent and sometimes more powerful way to compute the partition function other than the refined topological vertex in the A-model and the refined holomorphic anomaly equations in the B-model. We study the modular properties of the blowup equations and provide a procedure to determine all the vanishing and unity
r
fields from the polynomial part of refined topological string at large radius point. We also find that certain form of blowup equations exist at generic loci of the moduli space.
Journal Article
Exosomal circRNA-100338 promotes hepatocellular carcinoma metastasis via enhancing invasiveness and angiogenesis
2020
Background
Exosomes play crucial roles in regulating the crosstalk between normal and cancer cells in the tumor microenvironment, and in regulating cancer proliferation, migration and invasion through their cargo molecules.
Methods
We analyzed the pro-invasiveness of exosomal circRNA-100,338 in HCC using the transwell invasion assay. The co-culture of human umbilical vein endothelial cells (HUVEC) and exosomes derived from HCC cell lines were used to evaluate the impact of HCC derived exosomes on HUVEC. Nude mice models were used to validate the findings in vitro. Clinically, quantitative RT-PCR was used to quantify the expression of serum exosomal circRNA-100,338 in HCC patients at both pre-surgery within one week and post-surgery within three weeks.
Results
We aim to investigate the pro-invasive role of exosomal circRNA-100,338 in HCC metastasis. We for the first time demonstrated that circRNA-100,338 was highly expressed in both highly metastatic HCC cells and their secreted exosomes. The transwell invasion assay showed that the overexpression or knockdown of exosomal circRNA-100,338 significantly enhanced or reduced the invasive abilities of HCC cells. Subsequently, in vitro and in vivo assays showed that exosomal circRNA-100,338 affected the cell proliferation, angiogenesis, permeability, and vasculogenic mimicry (VM) formation ability of human umbilical vein endothelial cells (HUVEC), and tumor metastasis. Furthermore, we also observed that the persistent high expression of exosomal circRNA-100,338 in serum of HCC patients who underwent curative hepatectomy may be a risk indicator of pulmonary metastasis and poor survival.
Conclusions
Our findings indicated that metastatic ability of HCC cells could be enhanced by transferring exosomal circRNA-100,338 to recipient HUVECs, which could affect proangiogenic activity by regulating angiogenesis.
Journal Article
Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis
2018
Transition metal dichalcogenide materials have been explored extensively as catalysts to negotiate the hydrogen evolution reaction, but they often run at a large excess thermodynamic cost. Although activating strategies, such as defects and composition engineering, have led to remarkable activity gains, there remains the requirement for better performance that aims for real device applications. We report here a phosphorus-doping-induced phase transition from cubic to orthorhombic phases in CoSe
2
. It has been found that the achieved orthorhombic CoSe
2
with appropriate phosphorus dopant (8 wt%) needs the lowest overpotential of 104 mV at 10 mA cm
−2
in 1 M KOH, with onset potential as small as −31 mV. This catalyst demonstrates negligible activity decay after 20 h of operation. The striking catalysis performance can be attributed to the favorable electronic structure and local coordination environment created by this doping-induced structural phase transition strategy.
Transition metal dichalcogenides represent an exciting class of earth-abundant hydrogen-from-water electrocatalysts, although low efficiencies limit commercialization. Here, authors present a doping strategy to induce a phase transition in cobalt selenide and boost H
2
-evolution performance.
Journal Article
A Schwarz lemma for transversally V-harmonic maps between Riemannian foliated manifolds
2024
In this paper, we prove a transversal
V
-Laplacian comparison theorem under a transversal Bakry-Emery Ricci condition. We establish a Schwarz type lemma for transversally
V
-harmonic maps of bounded generalized transversal dilatation between Riemannian foliated manifolds by using this comparison theorem, including for the case of
V
=
∇
H
h
.
Journal Article
Supramolecular metallic foams with ultrahigh specific strength and sustainable recyclability
2024
Porous materials with ultrahigh specific strength are highly desirable for aerospace, automotive and construction applications. However, because of the harsh processing of metal foams and intrinsic low strength of polymer foams, both are difficult to meet the demand for scalable development of structural foams. Herein, we present a supramolecular metallic foam (SMF) enabled by core-shell nanostructured liquid metals connected with high-density metal-ligand coordination and hydrogen bonding interactions, which maintain fluid to avoid stress concentration during foam processing at subzero temperatures. The resulted SMFs exhibit ultrahigh specific strength of 489.68 kN m kg
−1
(about 5 times and 56 times higher than aluminum foams and polyurethane foams) and specific modulus of 281.23 kN m kg
−1
to withstand the repeated loading of a car, overturning the previous understanding of the difficulty to achieve ultrahigh mechanical properties in traditional polymeric or organic foams. More importantly, end-of-life SMFs can be reprocessed into value-added products (e.g., fibers and films) by facile water reprocessing due to the high-density interfacial supramolecular bonding. We envisage this work will not only pave the way for porous structural materials design but also show the sustainable solution to plastic environmental risks.
Porous materials with high strength are desirable for many applications. Here, the authors present a supramolecular metallic foam enabled by nanostructured liquid metals connected with high-density metal-ligand coordination to exhibit ultrahigh specific strength and recyclability.
Journal Article