Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Series TitleSeries Title
-
Reading LevelReading Level
-
YearFrom:-To:
-
More FiltersMore FiltersContent TypeItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
859
result(s) for
"Huang, Yanjun"
Sort by:
Safety of Autonomous Vehicles
2020
Autonomous vehicle (AV) is regarded as the ultimate solution to future automotive engineering; however, safety still remains the key challenge for the development and commercialization of the AVs. Therefore, a comprehensive understanding of the development status of AVs and reported accidents is becoming urgent. In this article, the levels of automation are reviewed according to the role of the automated system in the autonomous driving process, which will affect the frequency of the disengagements and accidents when driving in autonomous modes. Additionally, the public on-road AV accident reports are statistically analyzed. The results show that over 3.7 million miles have been tested for AVs by various manufacturers from 2014 to 2018. The AVs are frequently taken over by drivers if they deem necessary, and the disengagement frequency varies significantly from 2 × 10−4 to 3 disengagements per mile for different manufacturers. In addition, 128 accidents in 2014–2018 are studied, and about 63% of the total accidents are caused in autonomous mode. A small fraction of the total accidents (∼6%) is directly related to the AVs, while 94% of the accidents are passively initiated by the other parties, including pedestrians, cyclists, motorcycles, and conventional vehicles. These safety risks identified during on-road testing, represented by disengagements and actual accidents, indicate that the passive accidents which are caused by other road users are the majority. The capability of AVs to alert and avoid safety risks caused by the other parties and to make safe decisions to prevent possible fatal accidents would significantly improve the safety of AVs. Practical applications. This literature review summarizes the safety-related issues for AVs by theoretical analysis of the AV systems and statistical investigation of the disengagement and accident reports for on-road testing, and the findings will help inform future research efforts for AV developments.
Journal Article
Shapley value: from cooperative game to explainable artificial intelligence
2024
With the tremendous success of machine learning (ML), concerns about their black-box nature have grown. The issue of interpretability affects trust in ML systems and raises ethical concerns such as algorithmic bias. In recent years, the feature attribution explanation method based on Shapley value has become the mainstream explainable artificial intelligence approach for explaining ML models. This paper provides a comprehensive overview of Shapley value-based attribution methods. We begin by outlining the foundational theory of Shapley value rooted in cooperative game theory and discussing its desirable properties. To enhance comprehension and aid in identifying relevant algorithms, we propose a comprehensive classification framework for existing Shapley value-based feature attribution methods from three dimensions: Shapley value type, feature replacement method, and approximation method. Furthermore, we emphasize the practical application of the Shapley value at different stages of ML model development, encompassing pre-modeling, modeling, and post-modeling phases. Finally, this work summarizes the limitations associated with the Shapley value and discusses potential directions for future research.
Journal Article
Comparative Study of Trajectory Tracking Control for Automated Vehicles via Model Predictive Control and Robust H-infinity State Feedback Control
by
Huang, Yanjun
,
Pu, Huayan
,
Tang, Xiaolin
in
Advanced Transportation Equipment
,
Automated vehicles
,
Automatic control
2021
A comparative study of model predictive control (MPC) schemes and robust
H
∞
state feedback control (RSC) method for trajectory tracking is proposed in this paper. The main objective of this paper is to compare MPC and RSC controllers’ performance in tracking predefined trajectory under different scenarios. MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire, which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode. RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison. Then, three test cases are built in CarSim-Simulink joint platform. Specifically, the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions. Besides, the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability. Furthermore, an extreme curve test is built where the road adhesion changes suddenly, in order to test the performance of both controllers under extreme conditions. Finally, the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.
Journal Article
Antibacterial Efficacy and Mechanisms of Curcumin-Based Photodynamic Treatment against Staphylococcus aureus and Its Application in Juices
2022
Antimicrobial Photodynamic Treatment (aPDT) is a non-thermal sterilization technology, which can inactivate common foodborne pathogens. In the present study, photodynamic inactivation on Staphylococcus aureus (S. aureus) with different concentrations of curcumin and light dose was evaluated and the mechanisms were also investigated. The results showed that curcumin-based aPDT could inactivate S. aureus cells by 6.9 log CFU/mL in phosphate buffered saline (PBS). Moreover, the modified Gompertz model presented a good fit at the inactivation data of S. aureus. Photodynamic treatment caused cell membrane damage as revealed by analyzing scanning electron microscopy (SEM) images. Leakage of intracellular constituents further indicated that cell membrane permeability was changed. Flow cytometry with double staining demonstrated that cell membrane integrity and the activity of nonspecific esterase were destroyed. Compared with the control group, intracellular reactive oxygen species (ROS) levels caused by photodynamic treatment significantly increased. Furthermore, curcumin-based aPDT reduced S. aureus by 5 log CFU/mL in juices. The color of the juices was also tested using a Chromatic meter, and it was found that b* values were the most markedly influenced by photodynamic treatment. Overall, curcumin-based aPDT had strong antibacterial activity against S. aureus. This approach has the potential to remove foodborne pathogens from liquid food.
Journal Article
A Combined Reinforcement Learning and Model Predictive Control for Car-Following Maneuver of Autonomous Vehicles
by
Huang, Yanjun
,
Yang, Shuo
,
Yuan, Kang
in
Advanced Transportation Equipment
,
Algorithms
,
Autonomous vehicles
2023
Model predictive control is widely used in the design of autonomous driving algorithms. However, its parameters are sensitive to dynamically varying driving conditions, making it difficult to be implemented into practice. As a result, this study presents a self-learning algorithm based on reinforcement learning to tune a model predictive controller. Specifically, the proposed algorithm is used to extract features of dynamic traffic scenes and adjust the weight coefficients of the model predictive controller. In this method, a risk threshold model is proposed to classify the risk level of the scenes based on the scene features, and aid in the design of the reinforcement learning reward function and ultimately improve the adaptability of the model predictive controller to real-world scenarios. The proposed algorithm is compared to a pure model predictive controller in car-following case. According to the results, the proposed method enables autonomous vehicles to adjust the priority of performance indices reasonably in different scenarios according to risk variations, showing a good scenario adaptability with safety guaranteed.
Journal Article
Prognostic impact of lymphovascular and perineural invasion in squamous cell carcinoma of the tongue
2023
This study aimed to investigate the prognostic impact of lymphovascular and perineural invasions in patients with squamous cell carcinoma of the tongue who received surgery-based treatment at our institution between January 2013 and December 2020. Patients were divided into four groups based on the presence of perineural (P−/P +) and lymphovascular invasions (V−/V +): P–V−, P–V + , P + V−, and P + V + . Log-rank and Cox proportional hazard models were used to evaluate the association between perineural /lymphovascular invasion and overall survival (OS). Altogether, 127 patients were included, and 95 (74.8%), 8 (6.3%), 18 (14.2%), and 6 (4.7%) cases were classified as P–V−, P–V + , P + V−, and P + V + , respectively. Pathologic N stage (pN stage), tumor stage, histological grade, lymphovascular invasion, perineural invasion, and postoperative radiotherapy were significantly associated with OS (p < 0.05). OS was significantly different among the four groups (p < 0.05). Significant between-group differences in OS were detected for node-positive (p < 0.05) and stage III–IV (p < 0.05) cases. OS was the worst in the P + V + group. Lymphovascular and perineural invasions are independent negative prognostic factors for squamous cell carcinoma of the tongue. Patients with lymphovascular and/or perineural invasion may have significantly poorer overall survival than those without neurovascular involvement.
Journal Article
Adsorption Performance of Methylene Blue by KOH/FeCl3 Modified Biochar/Alginate Composite Beads Derived from Agricultural Waste
2023
In this study, high-performance modified biochar/alginate composite bead (MCB/ALG) adsorbents were prepared from recycled agricultural waste corncobs by a high-temperature pyrolysis and KOH/FeCl3 activation process. The prepared MCB/ALG beads were tested for the adsorption of methylene blue (MB) dye from wastewater. A variety of analytical methods, such as SEM, BET, FTIR and XRD, were used to investigate the structure and properties of the as-prepared adsorbents. The effects of solution pH, time, initial MB concentration and adsorption temperature on the adsorption performance of MCB/ALG beads were discussed in detail. The results showed that the adsorption equilibrium of MB dye was consistent with the Langmuir isothermal model and the pseudo-second-order kinetic model. The maximum adsorption capacity of MCB/ALG−1 could reach 1373.49 mg/g at 303 K. The thermodynamic studies implied endothermic and spontaneous properties of the adsorption system. This high adsorption performance of MCB/ALG was mainly attributed to pore filling, hydrogen bonding and electrostatic interactions. The regeneration experiments showed that the removal rate of MB could still reach 85% even after five cycles of experiments, indicating that MCB/ALG had good reusability and stability. These results suggested that a win-win strategy of applying agricultural waste to water remediation was feasible.
Journal Article
Aptamer-based fluorescent screening assay for acetamiprid via inner filter effect of gold nanoparticles on the fluorescence of CdTe quantum dots
2016
This paper reports a novel aptamer-based fluorescent detection method for small molecules represented by acetamiprid based on the specific binding of aptamers with acetamiprid, and the inner filter effect (IFE) of gold nanoparticles (AuNPs) on the fluorescence of CdTe quantum dots (CdTe QDs). When CdTe QDs were mixed with AuNPs, the fluorescence of CdTe QDs was significantly quenched via IFE. The IFE efficiency could be readily modulated by the absorption and the aggregation state of AuNPs. The presence of salt could easily induce the aggregation of AuNPs, resulting in the fluorescence recovery of the quenched QDs. Acetamiprid-binding aptamer (ABA) could adsorb on the negatively charged AuNPs through the coordination interaction to protect AuNPs from salt-induced aggregation, so the fluorescence of CdTe QDs would be quenched by the IFE of AuNPs. However, the specific binding of ABA with acetamiprid could release the ABA from the surfaces of AuNPs and decrease the salt tolerance of AuNPs, so the IFE-decreased fluorescence of CdTe QDs was regained with the presence of acetamiprid, and the fluorescence enhancement efficiency was driven by the concentration of acetamiprid. Based on this principle, the aptamer-based fluorescent method for acetamiprid has been established and optimized. The assay exhibited excellent selectivity towards acetamiprid over its analogues and other pesticides which may coexist with acetamiprid. Under the optimum experiment conditions, the established method could be applied for the determination of acetamiprid with a wide linear range from 0.05 to 1.0 μM, and a low detection limit of 7.29 nM (3σ). Furthermore, this IFE-based method has been successfully utilized to detect acetamiprid in six types of vegetables, and the results were in full agreement with those from HPLC and LC-MS. The proposed method displays remarkable advantages of high sensitivity, rapid analysis, excellent selectivity, and would be suitable for the practical application of target screening in real samples. Graphical Abstract ᅟ
Journal Article
Study on Rollover Index and Stability for a Triaxle Bus
by
Huang, Yanjun
,
Khajepour, Amir
,
Jin, Zhilin
in
Advanced Transportation Equipment
,
Automobiles
,
Buses
2019
Vehicle rollover, and its resulting fatalities, is an actively researched topic especially for multi-axle vehicles in the field of vehicle dynamics and control. This paper first presents a new rollover index for a triaxle bus to accurately evaluate its rollover possibility and then discusses the influence laws of the vehicle rollover dynamics to explore the mechanism of its stability. First, a six degree of freedom rollover model of the triaxle bus is developed, including lateral, yaw, roll motion of the sprung mass of the front/rear axle, and roll motion of the unsprung mass of the front/rear axle. Next, some key parameters of the vehicle rollover model are identified. A new rollover index is deduced according to the basics of vehicle dynamics, to predict vehicle rollover risk for the triaxle bus, which is verified by TruckSim. Furthermore, the influence laws of vehicle rollover dynamics by vehicle parameters and road parameters are discussed based on the simulation results. More importantly, the results show that the new method of modeling can precisely describe the rollover dynamics of the studied bus, and the proposed new index can effectively evaluate the rollover possibility. Therefore, this study provides a theoretical basis to improve anti-rollover ability for triaxle buses.
Journal Article