Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
167 result(s) for "Huang, Yun-Ju"
Sort by:
Epithelial‐mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients
Epithelial‐mesenchymal transition (EMT) is a reversible and dynamic process hypothesized to be co‐opted by carcinoma during invasion and metastasis. Yet, there is still no quantitative measure to assess the interplay between EMT and cancer progression. Here, we derived a method for universal EMT scoring from cancer‐specific transcriptomic EMT signatures of ovarian, breast, bladder, lung, colorectal and gastric cancers. We show that EMT scoring exhibits good correlation with previously published, cancer‐specific EMT signatures. This universal and quantitative EMT scoring was used to establish an EMT spectrum across various cancers, with good correlation noted between cell lines and tumours. We show correlations between EMT and poorer disease‐free survival in ovarian and colorectal, but not breast, carcinomas, despite previous notions. Importantly, we found distinct responses between epithelial‐ and mesenchymal‐like ovarian cancers to therapeutic regimes administered with or without paclitaxel in vivo and demonstrated that mesenchymal‐like tumours do not always show resistance to chemotherapy. EMT scoring is thus a promising, versatile tool for the objective and systematic investigation of EMT roles and dynamics in cancer progression, treatment response and survival. Synopsis A novel EMT scoring method reveals that EMT status does not unanimously correlate with poorer overall and disease‐free survival. Different EMTed tumours show distinct responses to certain chemotherapeutics, with the potential to stratify patients by EMT status. A novel scoring method was developed based on transcriptomics to universally estimate and compare the Epithelial‐Mesenchymal Transition (EMT) phenotype across cancer types. A spectrum of EMT was established across more than 15 cancers using this EMT scoring method. Correlations of EMT status with poorer overall‐ and disease‐free survival were not unanimously observed in all cancers. Differential and preferential responses of EMTed tumours to certain chemotherapeutics were observed, suggesting the potential to stratify patients by EMT status. Graphical Abstract A novel EMT scoring method reveals that EMT status does not unanimously correlate with poorer overall and disease‐free survival. Different EMTed tumours show distinct responses to certain chemotherapeutics, with the potential to stratify patients by EMT status.
Hinokitiol Inhibits Breast Cancer Cells In Vitro Stemness-Progression and Self-Renewal with Apoptosis and Autophagy Modulation via the CD44/Nanog/SOX2/Oct4 Pathway
Breast cancer (BC) represents one of the most prevalent malignant threats to women globally. Tumor relapse or metastasis is facilitated by BC stemness progression, contributing to tumorigenicity. Therefore, comprehending the characteristics of stemness progression and the underlying molecular mechanisms is pivotal for BC advancement. Hinokitiol (β-thujaplicin), a tropolone-related compound abundant in the heartwood of cupressaceous plants, exhibits antimicrobial activity. In our study, we employed three BC cell lines (MDA-MB-231, MCF-7, and T47D) to assess the expression of stemness-, apoptosis-, and autophagy-related proteins. Hinokitiol significantly reduced the viability of cancer cells in a dose-dependent manner. Furthermore, we observed that hinokitiol enhances apoptosis by increasing the levels of cleaved poly-ADP-ribose polymerase (PARP) and phospho-p53. It also induces dysfunction in autophagy through the upregulation of LC3B and p62 protein expression. Additionally, hinokitiol significantly suppressed the number and diameter of cancer cell line spheres by reducing the expression of cluster of differentiation44 (CD44) and key transcription factors. These findings underscore hinokitiol’s potential as a therapeutic agent for breast cancer, particularly as a stemness-progression inhibitor. Further research and clinical studies are warranted to explore the full therapeutic potential of hinokitiol in the treatment of breast cancer.
Effect of Vitamin D Supplementation on Primary Dysmenorrhea: A Systematic Review and Meta-Analysis of Randomized Clinical Trials
Dysmenorrhea causes pain and inconvenience during menstruation. In addition to medication, natural compounds are widely used to relieve various types of pain. In this study, we aimed to assess the effects of vitamin D (vit. D) supplementation in relieving the symptoms of primary dysmenorrhea. A comprehensive systematic database search of randomized controlled trials (RCTs) was performed. Oral forms of vit. D supplementation were included and compared with a placebo or standard care. The degree of dysmenorrhea pain was measured with a visual analogue scale or numerical rating scale. Outcomes were compared using the standardized mean difference (SMD) and 95% confidence intervals (CIs) in a meta-analysis. RCTs were assessed using the Cochrane risk-of-bias v2 (RoB 2) tool. The meta-analysis included 8 randomized controlled trials involving 695 participants. The results of the quantitative analysis showed a significantly lower degree of pain in the vit. D versus placebo in those with dysmenorrhea (SMD: −1.404, 95% CI: −2.078 to −0.731). The results of subgroup analysis revealed that pain lessened when the average weekly dose of vit. D was over 50,000 IU, in which dysmenorrhea was relieved regardless of whether vit. D was administered for more or less than 70 days and in any dose interval. The results revealed that vit. D treatment substantially reduced the pain level in the primary dysmenorrhea population. We concluded that vit. D supplementation is an alternative treatment for relieving the pain symptoms of dysmenorrhea.
Structural basis of HLX10 PD-1 receptor recognition, a promising anti-PD-1 antibody clinical candidate for cancer immunotherapy
Cancer immunotherapies, such as checkpoint blockade of programmed cell death protein-1 (PD-1), represents a breakthrough in cancer treatment, resulting in unprecedented results in terms of overall and progression-free survival. Discovery and development of novel anti PD-1 inhibitors remains a field of intense investigation, where novel monoclonal antibodies (mAbs) and novel antibody formats (e.g., novel isotype, bispecific mAb and low-molecular-weight compounds) are major source of future therapeutic candidates. HLX10, a fully humanized IgG 4 monoclonal antibody against PD-1 receptor, increased functional activities of human T-cells and showed in vitro , and anti-tumor activity in several tumor models. The combined inhibition of PD-1/PDL-1 and angiogenesis pathways using anti-VEGF antibody may enhance a sustained suppression of cancer-related angiogenesis and tumor elimination. To elucidate HLX10’s mode of action, we solved the structure of HLX10 in complex with PD-1 receptor. Detailed epitope analysis showed that HLX10 has a unique mode of recognition compared to the clinically approved PD1 antibodies Pembrolizumab and Nivolumab. Notably, HLX10’s epitope was closer to Pembrolizumab’s epitope than Nivolumab’s epitope. However, HLX10 and Pembrolizumab showed an opposite heavy chain (HC) and light chain (LC) usage, which recognizes several overlapping amino acid residues on PD-1. We compared HLX10 to Nivolumab and Pembrolizumab and it showed similar or better bioactivity in vitro and in vivo , providing a rationale for clinical evaluation in cancer immunotherapy.
Protective Effects of an Oligo-Fucoidan-Based Formula against Osteoarthritis Development via iNOS and COX-2 Suppression following Monosodium Iodoacetate Injection
Osteoarthritis (OA) is a debilitating joint disorder characterized by cartilage degradation and chronic inflammation, accompanied by high oxidative stress. In this study, we utilized the monosodium iodoacetate (MIA)-induced OA model to investigate the efficacy of oligo-fucoidan-based formula (FF) intervention in mitigating OA progression. Through its capacity to alleviate joint bearing function and inflammation, improvements in cartilage integrity following oligo-fucoidan-based formula intervention were observed, highlighting its protective effects against cartilage degeneration and structural damage. Furthermore, the oligo-fucoidan-based formula modulated the p38 signaling pathway, along with downregulating cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expression, contributing to its beneficial effects. Our study provides valuable insights into targeted interventions for OA management and calls for further clinical investigations to validate these preclinical findings and to explore the translational potential of an oligo-fucoidan-based formula in human OA patients.
Urine Soluble CD163 Is a Promising Biomarker for the Diagnosis and Evaluation of Lupus Nephritis
IntroductionUrine-soluble CD163 (usCD163) is released from alternatively activated macrophages involved in the resolution of inflammation in glomeruli and plays an important role in glomerulonephritis. This study explored the role of usCD163 in patients with systemic lupus erythematosus (SLE).Materials and MethodsusCD163 concentrations were measured cross-sectionally in 261 SLE patients in Taiwan. Clinical and laboratory data were collected, and SLE disease activity scores were calculated to assess the correlation with usCD163.ResultsSLE patients with high usCD163 levels tended to be younger, with a higher hospital admission rate, higher prednisolone dose, lower estimated glomerular filtration rate, higher urine protein creatinine ratio (UPCR), more pyuria and hematuria, higher levels of inflammatory markers, higher rates of anemia, neutropenia, and lymphopenia, lower complement 3 (C3) levels, higher anti-double-stranded DNA antibody (anti-dsDNA Ab) levels, and higher disease activity scores (p < 0.05). usCD163 levels were significantly higher in patients with active lupus nephritis (LN) than in those with extrarenal or inactive SLE and correlated with UPCR, disease activity, and anti-dsDNA Ab levels. SLE patients with high usCD163 levels tended to have a higher chronic kidney disease stage.Discussion and conclusionThe usCD163 level correlates with the severity of LN and disease activity in renal SLE.
Dual role of autophagy in hallmarks of cancer
Evolutionarily conserved across eukaryotic cells, macroautophagy (herein autophagy) is an intracellular catabolic degradative process targeting damaged and superfluous cellular proteins, organelles, and other cytoplasmic components. Mechanistically, it involves formation of double-membrane vesicles called autophagosomes that capture cytosolic cargo and deliver it to lysosomes, wherein the breakdown products are eventually recycled back to the cytoplasm. Dysregulation of autophagy often results in various disease manifestations, including neurodegeneration, microbial infections, and cancer. In the case of cancer, extensive attention has been devoted to understanding the paradoxical roles of autophagy in tumor suppression and tumor promotion. In this review, while we summarize how this self-eating process is implicated at various stages of tumorigenesis, most importantly, we address the link between autophagy and hallmarks of cancer. This would eventually provide a better understanding of tumor dependence on autophagy. We also discuss how therapeutics targeting autophagy can counter various transformations involved in tumorigenesis. Finally, this review will provide a novel insight into the mutational landscapes of autophagy-related genes in several human cancers, using genetic information collected from an array of cancers.
Anti-Inflammatory and Anti-Hyperuricemic Effects of Chrysin on a High Fructose Corn Syrup-Induced Hyperuricemia Rat Model via the Amelioration of Urate Transporters and Inhibition of NLRP3 Inflammasome Signaling Pathway
Hyperuricemia is the main cause of gout and involved in the occurrence of many other diseases such as hyperlipidemia and hypertension correlated with metabolic disorders. Chrysin is a flavonoid compound found naturally in honey, propolis, and mushrooms and has anti-inflammatory and antioxidant effects. However, its mechanism of action is not clear yet. This study investigated the mechanism of chrysin’s anti-hyperuricemic effect in hyperuricemia-induced rats fed with high-fructose corn syrup. Orally administrated chrysin for 28 consecutive days effectively decreased uric acid by inhibiting the activity of xanthine oxidase (XO) in the liver. Moreover, chrysin markedly downregulated the protein expression of uric acid transporter 1 (URAT1) and glucose transporter type 9 (GLUT9) and upregulated the protein expression of organic anion transporter 1 (OAT1) and human ATP-binding cassette subfamily G-2 (ABCG2). In addition, chrysin showed prominent anti-oxidative and inflammatory effects as the malondialdehyde (MDA) and interleukin 1 beta (IL-1β) concentration was reduced in both rat kidney and serum, which aligned with the inhibition of NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway activation. Collectively, our results strongly suggest that chrysin exhibits potent anti-hyperuricemic and anti-inflammatory effects that may yield new adjuvant treatments for gout.
Fecal microbiota changes in NZB/W F1 mice after induction of lupus disease
The association between the gut microbiota and the development of lupus is unclear. We investigated alterations in the gut microbiota after induction of lupus in a murine model using viral peptide of human cytomegalovirus (HCMV). Three treatment arms for the animals were prepared: intraperitoneal injection of HCMVpp65 peptide, adjuvant alone, and PBS injection. Feces were collected before and after lupus induction biweekly for 16S rRNA sequencing. HCMVpp65 peptide immunization induced lupus-like effects, with higher levels of anti-dsDNA antibodies, creatinine, proteinuria, and glomerular damage, compared with mice treated with nothing or adjuvant only. The Simpson diversity value was higher in mice injected with HCMVpp65 peptide, but there was no difference in ACE or Chao1 among the three groups. Statistical analysis of metagenomic profiles showed a higher abundance of various families ( Saccharimonadaceae , Marinifiaceae , and Desulfovibrionaceae ) and genera ( Candidatus Saccharimonas , Roseburia , Odoribacter , and Desulfovibrio ) in HCMVpp65 peptide-treated mice. Significant correlations between increased abundances of related genera ( Candidatus Saccharimonas , Roseburia , Odoribacter , and Desulfovibrio ) and HCMVpp65 peptide immunization-induced lupus-like effects were observed. This study provides insight into the changes in the gut microbiota after lupus onset in a murine model.
Protective Effects of Epigallocatechin Gallate (EGCG) on Endometrial, Breast, and Ovarian Cancers
Green tea and its major bioactive component, (−)-epigallocatechin gallate (EGCG), possess diverse biological properties, particularly antiproliferation, antimetastasis, and apoptosis induction. Many studies have widely investigated the anticancer and synergistic effects of EGCG due to the side effects of conventional cytotoxic agents. This review summarizes recent knowledge of underlying mechanisms of EGCG on protective roles for endometrial, breast, and ovarian cancers based on both in vitro and in vivo animal studies. EGCG has the ability to regulate many pathways, including the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), inhibition of nuclear factor-κB (NF-κB), and protection against epithelial–mesenchymal transition (EMT). EGCG has also been found to interact with DNA methyltransferases (DNMTs) and histone deacetylases (HDACs), which affect epigenetic modifications. Finally, the action of EGCG may exert a suppressive effect on gynecological cancers and have beneficial effects on auxiliary therapies for known drugs. Thus, future clinical intervention studies with EGCG will be necessary to more and clear evidence for the benefit to these cancers.