Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
265 result(s) for "Hubmayr, J."
Sort by:
Sensitivity of the Prime-Cam Instrument on the CCAT-Prime Telescope
CCAT-prime is a new 6 m crossed Dragone telescope designed to characterize the cosmic microwave background (CMB) polarization and foregrounds, measure the Sunyaev–Zel’dovich effects of galaxy clusters, map the [CII] emission intensity from the epoch of reionization (EoR), and monitor accretion luminosity over multiyear timescales of hundreds of protostars in the Milky Way. CCAT-prime will make observations from a 5600-m-altitude site on Cerro Chajnantor in the Atacama Desert of northern Chile. The novel optical design of the telescope combined with high-surface-accuracy ( < 10 μ m) mirrors and the exceptional atmospheric conditions of the site will enable sensitive broadband, polarimetric, and spectroscopic surveys at sub-millimeter to millimeter wavelengths. Prime-Cam, the first light instrument for CCAT-prime, consists of a 1.8-m-diameter cryostat that can house seven individual instrument modules. Each instrument module, optimized for a specific science goal, will use state-of-the-art kinetic inductance detector (KID) arrays operated at ∼ 100 mK and Fabry–Perot interferometers (FPI) for the EoR science. Prime-Cam will be commissioned with staged deployments to populate the seven instrument modules. The full instrument will consist of 60,000 polarimetric KIDs at a combination of 220/280/350/410 GHz, 31,000 KIDS at 250/360 GHz coupled with FPIs, and 21,000 polarimetric KIDs at 850 GHz. Prime-Cam is currently being built, and the CCAT-prime telescope is designed and under construction by Vertex Antennentechnik GmbH to achieve first light in 2021. CCAT-prime is also a potential telescope platform for the future CMB Stage IV observations.
Advanced ACTPol Cryogenic Detector Arrays and Readout
Advanced ACTPol is a polarization-sensitive upgrade for the 6 m aperture Atacama Cosmology Telescope, adding new frequencies and increasing sensitivity over the previous ACTPol receiver. In 2016, Advanced ACTPol will begin to map approximately half the sky in five frequency bands (28-230 GHz). Its maps of primary and secondary cosmic microwave background anisotropies-imaged in intensity and polarization at few arcminute-scale resolution-will enable precision cosmological constraints and also awide array of cross-correlation science that probes the expansion history of the universe and the growth of structure via gravitational collapse. To accomplish these scientific goals, the AdvancedACTPol receiver will be a significant upgrade to the ACTPol receiver, including four new multichroic arrays of cryogenic, feedhorn-coupled AlMn transition edge sensor polarimeters (fabricated on 150 mm diameter wafers); a system of continuously rotating meta-material silicon half-wave plates; and a new multiplexing readout architecture which uses superconducting quantum interference devices and time division to achieve a 64-row multiplexing factor. Here we present the status and scientific goals of the Advanced ACTPol instrument, emphasizing the design and implementation of the AdvancedACTPol cryogenic detector arrays.
The CLASS 150/220 GHz Polarimeter Array: Design, Assembly, and Characterization
We report on the development of a polarization-sensitive dichroic (150/220 GHz) detector array for the Cosmology Large Angular Scale Surveyor (CLASS) delivered to the telescope site in June 2019. In concert with existing 40 and 90 GHz telescopes, the 150/220 GHz telescope will make observations of the cosmic microwave background over large angular scales aimed at measuring the primordial B-mode signal, the optical depth to reionization, and other fundamental physics and cosmology. The 150/220 GHz focal plane array consists of three detector modules with 1020 transition edge sensor bolometers in total. Each dual-polarization pixel on the focal plane contains four bolometers to measure the two linear polarization states at 150 and 220 GHz. Light is coupled through a planar orthomode transducer fed by a smooth-walled feedhorn array made from an aluminum–silicon alloy (CE7). In this work, we discuss the design, assembly, and in-laboratory characterization of the 150/220 GHz detector array. The detectors are photon-noise limited, and we estimate the total array noise-equivalent power to be 2.5 and 4  aW s for 150 and 220 GHz arrays, respectively.
Characterization of the Mid-Frequency Arrays for Advanced ACTPol
The Advanced ACTPol upgrade on the Atacama Cosmology Telescope aims to improve the measurement of the cosmic microwave background anisotropies and polarization, using four new dichroic detector arrays fabricated on 150-mm silicon wafers. These bolometric cameras use AlMn transition-edge sensors, coupled to feedhorns with orthomode transducers for polarization sensitivity. The first deployed camera is sensitive to both 150 and 230 GHz. Here, we present the laboratory characterization of the thermal parameters and optical efficiencies for the two newest fielded arrays, each sensitive to both 90 and 150 GHz. We provide assessments of the parameter uniformity across each array with evaluation of systematic uncertainties. Lastly, we show the arrays’ initial performance in the field.
The Design of the CCAT-prime Epoch of Reionization Spectrometer Instrument
The epoch of reionization spectrometer (EoR-Spec) is an instrument module for the Prime-Cam receiver of the 6-m aperture CCAT-prime Telescope at 5600 m in Chile. EoR-Spec will perform 158 μ m [CII] line intensity mapping of star-forming regions at redshifts between 3.5 and 8 (420–210 GHz), tracing the evolution of structure during early galaxy formation. At lower redshifts, EoR-Spec will observe galaxies near the period of peak star formation—when most stars in today’s universe were formed. At higher redshifts, EoR-Spec will trace the late stages of reionization, the early stages of galaxy assembly, and the formation of large-scale, three-dimensional clustering of star-forming galaxies. To achieve its science goals, EoR-Spec will utilize CCAT-prime’s exceptionally low water vapor site, large field of view ( ∼ 5 ∘ at 210 GHz), and narrow beam widths ( ∼ 1 arcminute at 210 GHz). EoR-Spec will be outfitted with a cryogenic, metamaterial, silicon substrate-based Fabry–Perot interferometer operating at a resolving power ( λ / Δ λ ) of 100. Monolithic dichroic arrays of cryogenic, feedhorn-coupled transition edge sensor bolometers provide approximately 6000 detectors, which are read out using a frequency division multiplexing system based on microwave SQUIDs. The novel design allows the measurement of the [CII] line at two redshifts simultaneously using dichroic pixels and two orders of the Fabry–Perot. Here we present the design and science goals of EoR-Spec, with emphasis on the spectrometer, detector array, and readout designs.
Kinetic Inductance Traveling Wave Amplifier Designs for Practical Microwave Readout Applications
A Kinetic Inductance Traveling Wave Amplifier (KIT) utilizes the nonlinear kinetic inductance of superconducting films, particularly niobium titanium nitride (NbTiN), for parametric amplification. These amplifiers achieve remarkable performance in terms of gain, bandwidth, and compression power and frequently approach the quantum limit for noise. However, most KIT demonstrations have been isolated from practical device readout systems. Using a KIT as the first amplifier in the readout chain of an unoptimized microwave SQUID multiplexer coupled to a transition-edge sensor microcalorimeter, we see an initial improvement in the flux noise [ 1 ]. One challenge in KIT integration is the considerable microwave pump power required to drive the non-linearity. To address this, we have initiated efforts to reduce the pump power by using thinner NbTiN films and an inverted microstrip transmission line design. In this article, we present the new transmission line design, fabrication procedure, and initial device characterization—including gain and added noise. These devices exhibit over 10 dB of gain with a 3 dB bandwidth of approximately 5.5–7.25 GHz, a maximum practical gain of 12 dB, and typical gain ripple under 4 dB peak to peak. We observe an appreciable impedance mismatch in the NbTiN transmission line, which is likely the source of the majority of the gain ripple. Finally, we perform an initial noise characterization and demonstrate system-added noise of three quanta or less over nearly the entire 3 dB bandwidth.
Demonstration of 220/280 GHz Multichroic Feedhorn-Coupled TES Polarimeter
We describe the design and measurement of feedhorn-coupled, transition-edge sensor (TES) polarimeters with two passbands centered at 220 GHz and 280 GHz, intended for observations of the cosmic microwave background. Each pixel couples polarized light in two linear polarizations by use of a planar orthomode transducer and senses power via four TES bolometers, one for each band in each linear polarization. Previous designs of this detector architecture incorporated passbands from 27 to 220 GHz; we now demonstrate this technology at frequencies up to 315 GHz. Observational passbands are defined with an on-chip diplexer, and Fourier-transform-spectrometer measurements are in excellent agreement with simulations. We find coupling from feedhorn to TES bolometer using a cryogenic, temperature-controlled thermal source. We determine the optical efficiency of our device is η = 77 % ± 6 % ( 75 % ± 5 % ) for 220 (280) GHz, relative to the designed passband shapes. Lastly, we compare two power-termination schemes commonly used in wide-bandwidth millimeter-wave polarimeters and find equal performance in terms of optical efficiency and passband shape.
Development of Space-Optimized TES Bolometer Arrays for LiteBIRD
LiteBIRD is a cosmic microwave background polarization experiment with the goal of measuring the tensor-to-scalar ratio with a total uncertainty of δ r < 0.001 . It will survey the full sky from space for 3 years in 15 frequency bands spanning 34–448 GHz. We are developing detector arrays for the six lowest frequency bands covering 34–99 GHz. The arrays are populated with lenslet-coupled sinuous antennas, triplexer bandpass filters, and transition-edge sensor (TES) bolometers. We have measured the electrical and thermal properties of several TES designs to determine space-optimized parameters. The design balances requirements for low saturation power of the space environment while maintaining a fast time response for use with a continuously rotating half-wave plate. We have achieved detector saturation powers below 1 pW, with time constants faster than 1 ms, at a 100 mK bath temperature measured using both time- and frequency-division multiplexed SQUID readout systems. Using this information, we have fabricated multi-chroic pixels with antenna-coupled space-optimized bolometers.
End-to-End Modeling of the TDM Readout System for CMB-S4
The CMB-S4 experiment is developing next-generation ground-based microwave telescopes to observe the cosmic microwave background with unprecedented sensitivity. This will require an order of magnitude increase in the 100-mK detector count, which, in turn, increases the demands on the readout system. The CMB-S4 readout will use time-division multiplexing (TDM), taking advantage of faster switches and amplifiers in order to achieve an increased multiplexing factor. To facilitate the design of the new readout system, we have developed a model that predicts the bandwidth and noise performance of this circuitry and its interconnections. This is then used to set requirements on individual components in order to meet the performance necessary for the full system. We present an overview of this model and compare the model results to the performance of both legacy and prototype readout hardware.
SLAC Microresonator Radio Frequency (SMuRF) Electronics for Read Out of Frequency-Division-Multiplexed Cryogenic Sensors
Large arrays of cryogenic sensors for various imaging applications ranging across x-ray, gamma-ray, cosmic microwave background, mm/sub-mm, as well as particle detection increasingly rely on superconducting microresonators for high multiplexing factors. These microresonators take the form of microwave SQUIDs that couple to transition-edge sensors or microwave kinetic inductance detectors. In principle, such arrays can be read out with vastly scalable software-defined radio using suitable FPGAs, ADCs and DACs. In this work, we share plans and show initial results for SLAC Microresonator Radio Frequency (SMuRF) electronics, a next-generation control and readout system for superconducting microresonators. SMuRF electronics are unique in their implementation of specialized algorithms for closed-loop tone tracking, which consists of fast feedback and feedforward to each resonator’s excitation parameters based on transmission measurements. Closed-loop tone tracking enables improved system linearity, a significant increase in sensor count per readout line, and the possibility of overcoupled resonator designs for enhanced dynamic range. Low-bandwidth prototype electronics were used to demonstrate closed-loop tone tracking on twelve 300-kHz-wide microwave SQUID resonators, spaced at ∼  6 MHz with center frequencies ∼  5–6 GHz. We achieve multi-kHz tracking bandwidth and demonstrate that the noise floor of the electronics is subdominant to the noise intrinsic in the multiplexer.