Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
10 result(s) for "Huettner, Claudia S."
Sort by:
Activated protein C targets CD8+ dendritic cells to reduce the mortality of endotoxemia in mice
Activated protein C (aPC) therapy reduces mortality in adult patients with severe sepsis. In mouse endotoxemia and sepsis models, mortality reduction requires the cell signaling function of aPC, mediated through protease-activated receptor-1 (PAR1) and endothelial protein C receptor (EPCR; also known as Procr). Candidate cellular targets of aPC include vascular endothelial cells and leukocytes. Here, we show that expression of EPCR and PAR1 on hematopoietic cells is required in mice for an aPC variant that mediates full cell signaling activity but only minimal anticoagulant function (5A-aPC) to reduce the mortality of endotoxemia. Expression of EPCR in mature murine immune cells was limited to a subset of CD8+ conventional dendritic cells. Adoptive transfer of splenic CD11chiPDCA-1- dendritic cells from wild-type mice into animals with hematopoietic EPCR deficiency restored the therapeutic efficacy of aPC, whereas transfer of EPCR-deficient CD11chi dendritic cells or wild-type CD11chi dendritic cells depleted of EPCR+ cells did not. In addition, 5A-aPC inhibited the inflammatory response of conventional dendritic cells independent of EPCR and suppressed IFN-gamma production by natural killer-like dendritic cells. These data reveal an essential role for EPCR and PAR1 on hematopoietic cells, identify EPCR-expressing dendritic immune cells as a critical target of aPC therapy, and document EPCR-independent antiinflammatory effects of aPC on innate immune cells.
Evaluating Clinical Genome Sequence Analysis by Watson for Genomics
Oncologists increasingly rely on clinical genome sequencing to pursue effective, molecularly targeted therapies. This study assesses the validity and utility of the artificial intelligence Watson for Genomics (WfG) for analyzing clinical sequencing results. This study identified patients with solid tumors who participated in in-house genome sequencing projects at a single cancer specialty hospital between April 2013 and October 2016. Targeted genome sequencing results of these patients' tumors, previously analyzed by multidisciplinary specialists at the hospital, were reanalyzed by WfG. This study measures the concordance between the two evaluations. In 198 patients, in-house genome sequencing detected 785 gene mutations, 40 amplifications, and 22 fusions after eliminating single nucleotide polymorphisms. Breast cancer ( = 40) was the most frequent diagnosis in this analysis, followed by gastric cancer ( = 31), and lung cancer ( = 30). Frequently detected single nucleotide variants were found in ( = 107), ( = 24), and ( = 23). ( = 10) was the most frequently detected gene amplification, followed by ( = 9) and ( = 6). Concordant pathogenic classifications (i.e., pathogenic, benign, or variant of unknown significance) between in-house specialists and WfG included 705 mutations (89.8%; 95% CI, 87.5%-91.8%), 39 amplifications (97.5%; 95% CI, 86.8-99.9%), and 17 fusions (77.3%; 95% CI, 54.6-92.2%). After about 12 months, reanalysis using a more recent version of WfG demonstrated a better concordance rate of 94.5% (95% CI, 92.7-96.0%) for gene mutations. Across the 249 gene alterations determined to be pathogenic by both methods, including mutations, amplifications, and fusions, WfG covered 84.6% (88 of 104) of all targeted therapies that experts proposed and offered an additional 225 therapeutic options. WfG was able to scour large volumes of data from scientific studies and databases to analyze in-house clinical genome sequencing results and demonstrated the potential for application to clinical practice; however, we must train WfG in clinical trial settings.
ONT in Clinical Diagnostics of Repeat Expansion Disorders: Detection and Reporting Challenges
While whole-genome sequencing (WGS) using short-read technology has become a standard diagnostic test, this technology has limitations in analyzing certain genomic regions, particularly short tandem repeats (STRs). These repetitive sequences are associated with over 50 diseases, primarily affecting neurological function, including Huntington disease, frontotemporal dementia, and Friedreich’s ataxia. We analyzed 2689 cases with movement disorders and dementia-related phenotypes processed at Variantyx in 2023–2024 using a two-tiered approach, with an initial short-read WGS followed by ONT long-read sequencing (when necessary) for variant characterization. Of the 2038 cases (75.8%) with clinically relevant genetic variants, 327 (16.0%) required additional long-read analysis. STR variants were reported in 338 cases (16.6% of positive cases), with approximately half requiring long-read sequencing for definitive classification. The combined approach enabled the precise determination of repeat length, composition, somatic mosaicism, and methylation status. Notable advantages included the detection of complex repeat structures in several genes such as RFC1, FGF14, and FXN, where long-read sequencing allowed to determine somatic repeat unit variations and accurate allele phasing. Further studies are needed to establish technology-specific guidelines for the standardized interpretation of long-read sequencing data for the clinical diagnostics of repeat expansion disorders.
PP2A-activating drugs selectively eradicate TKI-resistant chronic myeloid leukemic stem cells
The success of tyrosine kinase inhibitors (TKIs) in treating chronic myeloid leukemia (CML) depends on the requirement for BCR-ABL1 kinase activity in CML progenitors. However, CML quiescent HSCs are TKI resistant and represent a BCR-ABL1 kinase-independent disease reservoir. Here we have shown that persistence of leukemic HSCs in BM requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A) and expression--but not activity--of the BCR-ABL1 oncogene. Examination of HSCs from CML patients and healthy individuals revealed that PP2A activity was suppressed in CML compared with normal HSCs. TKI-resistant CML quiescent HSCs showed increased levels of BCR-ABL1, but very low kinase activity. BCR-ABL1 expression, but not kinase function, was required for recruitment of JAK2, activation of a JAK2/β-catenin survival/self-renewal pathway, and inhibition of PP2A. PP2A-activating drugs (PADs) markedly reduced survival and self-renewal of CML quiescent HSCs, but not normal quiescent HSCs, through BCR-ABL1 kinase-independent and PP2A-mediated inhibition of JAK2 and β-catenin. This led to suppression of human leukemic, but not normal, HSC/progenitor survival in BM xenografts and interference with long-term maintenance of BCR-ABL1-positive HSCs in serial transplantation assays. Targeting the JAK2/PP2A/β-catenin network in quiescent HSCs with PADs (e.g., FTY720) has the potential to treat TKI-refractory CML and relieve lifelong patient dependence on TKIs.
Differential Regulation of the Human and Murine CD34 Genes in Hematopoietic Stem Cells
Human CD34 (hCD34)-positive cells are used currently as a source for hematopoietic transplantation in humans. However, in steady-state murine hematopoiesis, hematopoietic stem cells (HSCs) with long-term reconstitution activity are found almost exclusively in the murine CD34 (mCD34)-negative to low fraction. To evaluate the possible differences in hCD34 and mCD34 gene expression in hematopoiesis, we made transgenic mouse strains with human genomic P1 artificial chromosome clones spanning the entire hCD34 genomic locus. In all transgenic mouse strains, a vast majority of phenotypic and functional HSC populations including mCD34-/lo express the hCD34 transgene. These data strongly support the notion that hCD34+ human bone marrow cells contain long-term HSCs that can maintain hematopoiesis throughout life.
Reversibility of acute B-cell leukaemia induced by BCR–ABL1
Cancer is thought to arise from multiple genetic events that establish irreversible malignancy. A different mechanism might be present in certain leukaemias initiated by a chromosomal translocation. We have taken a new approach to determine if ablation of the genetic abnormality is sufficient for reversion by generating a conditional transgenic model of BCR – ABL1 (also known as BCR – ABL )-induced leukaemia. This oncogene 1 is the result of a reciprocal translocation and is associated with different forms of leukaemia 2 . The most common form, p210 BCR – ABL1 , is found in more than 90% of patients with chronic myelogenous leukaemia 3 , 4 (CML) and in up to 15% of adult patients with de novo acute lymphoblastic leukaemia 5 (ALL). Efforts to establish a useful transgenic model have been hampered by embryonic lethality when the oncogene is expressed during embryogenesis 6 , 7 , by reduced penetrance or by extremely long latency periods 8 , 9 . One model uses the ‘knock-in’ approach to induce leukaemia by p190 BCR – ABL1 (ref. 10 ). Given the limitations of models with p210, we used a different experimental approach 11 . Lethal leukaemia developed within an acceptable time frame in all animals, and complete remission was achieved by suppression of BCR – ABL1 expression, even after multiple rounds of induction and reversion. Our results demonstrate that BCR – ABL1 is required for both induction and maintenance of leukaemia.
Activated protein C targets CD8.sup.+ dendritic cells to reduce the mortality of endotoxemia in mice
Activated protein C (aPC) therapy reduces mortality in adult patients with severe sepsis. In mouse endotoxemia and sepsis models, mortality reduction requires the cell signaling function of aPC, mediated through protease-activated receptor-1 (PAR1) and endothelial protein C receptor (EPCR; also known as Procr). Candidate cellular targets of aPC include vascular endothelial cells and leukocytes. Here, we show that expression of EPCR and PAR1 on hematopoietic cells is required in mice for an aPC variant that mediates full cell signaling activity but only minimal anticoagulant function (5A-aPC) to reduce the mortality of endotoxemia. Expression of EPCR in mature murine immune cells was limited to a subset of CD[8.sup.+] conventional dendritic cells. Adoptive transfer of splenic CD[11c.sup.hi]PDCA-1- dendritic cells from wild-type mice into animals with hematopoietic EPCR deficiency restored the therapeutic efficacy of aPC, whereas transfer of EPCR-deficient CD[11c.sup.hi] dendritic cells or wild-type CD[11c.sup.hi] dendritic cells depleted of [EPCR.sup.+] cells did not. In addition, 5A-aPC inhibited the inflammatory response of conventional dendritic cells independent of EPCR and suppressed IFN-γ production by natural killer-like dendritic cells. These data reveal an essential role for EPCR and PAR1 on hematopoietic cells, identify EPCR-expressing dendritic immune cells as a critical target of aPC therapy, and document EPCRindependent antiinflammatory effects of aPC on innate immune cells.
Activated protein C targets CD8^sup +^ dendritic cells to reduce the mortality of endotoxemia in mice
Activated protein C (aPC) therapy reduces mortality in adult patients with severe sepsis. In mouse endotoxemia and sepsis models, mortality reduction requires the cell signaling function of aPC, mediated through protease-activated receptor-1 (PAR1) and endothelial protein C receptor (EPCR; also known as Procr). Candidate cellular targets of aPC include vascular endothelial cells and leukocytes. Here, we show that expression of EPCR and PAR1 on hematopoietic cells is required in mice for an aPC variant that mediates full cell signaling activity but only minimal anticoagulant function (5A-aPC) to reduce the mortality of endotoxemia. Expression of EPCR in mature murine immune cells was limited to a subset of CD8+ conventional dendritic cells. Adoptive transfer of splenic CD11chiPDCA-1- dendritic cells from wild-type mice into animals with hematopoietic EPCR deficiency restored the therapeutic efficacy of aPC, whereas transfer of EPCR-deficient CD11chi dendritic cells or wild-type CD11chi dendritic cells depleted of EPCR+ cells did not. In addition, 5A-aPC inhibited the inflammatory response of conventional dendritic cells independent of EPCR and suppressed IFN-gamma production by natural killer-like dendritic cells. These data reveal an essential role for EPCR and PAR1 on hematopoietic cells, identify EPCR-expressing dendritic immune cells as a critical target of aPC therapy, and document EPCR-independent antiinflammatory effects of aPC on innate immune cells.
Class I α-Mannosidases Are Required for N-Glycan Processing and Root Development in Arabidopsis Thaliana
In eukaryotes, class I α-mannosidases are involved in early N-glycan processing reactions and in N-glycan-dependent quality control in the endoplasmic reticulum (ER). To investigate the role of these enzymes in plants, we identified the ERtype α-mannosidase I (MNS3) and the two Golgi-α-mannosidase I proteins (MNS1 and MNS2) from Arabidopsis thaliana. All three MNS proteins were found to localize in punctate mobile structures reminiscent of Golgi bodies. Recombinant forms of the MNS proteins were able to process oligomannosidic N-glycans. While MNS3 efficiently cleaved off one selected α 1,2-mannose residue from Man₉GlcNAc₂, MNS1/2 readily removed three α1,2-mannose residues from Man₈GlcNAc₂. Mutation in the MNS genes resulted in the formation of aberrant N-glycans in the mns3 single mutant and Man 8 GlcNAc 2 accumulation in the mns1 mns2 double mutant. N-glycan analysis in the mns triple mutant revealed the almost exclusive presence of Man₉GlcNAc₂, demonstrating that these three MNS proteins play a key role in N-glycan processing. The mns triple mutants displayed short, radially swollen roots and altered cell walls. Pharmacological inhibition of class I α-mannosidases in wildtype seedlings resulted in a similar root phenotype. These findings show that class I α-mannosidases are essential for early N-glycan processing and play a role in root development and cell wall biosynthesis in Arabidopsis.
Expression of matrix metalloproteinases in human glioma cell lines in the presence of IL-10
Matrix metalloproteinases have been implicated to play a vital role in glioma invasion as they degrade extracellular matrix to facilitate the subsequent migration of tumor cells into the surrounding brain tissue. The cytokine Interleukin-10 (IL-10) was detected recently in glial tumors in vivo. Expression of specific IL-10 mRNA as well as blood serum levels of IL-10 in glioma patients increased with malignancy suggesting a functional role of IL-10 in glioma progression. Moreover, glioma cell migration in vitro was enhanced in the presence of IL-10. We therefore investigated the expression of the matrix metalloproteinases (MMPs) stromelysin-1 (MMP-3), 72-kDa collagenase (MMP-2), 92-kDa collagenase (MMP-9), matrilysin (MMP-7) and the human macrophage metalloelastase (MMP-12). In addition, a possible relation between exposure of glioma cells to IL-10 and invasiveness of these cells due to MMP expression was analyzed. Experiments with Matrigel coated Boyden chambers revealed a pronounced dose dependent effect of IL-10 on glioma invasiveness. The synthetic MMP-inhibitor Marimastat markedly reduced cell invasion in the Boyden chambers confirming the significance of MMPs in the process of invasion. Subsequently, the expression level of MMPs and the serine protease uPA was investigated in 7 glioma cell lines (U373, GaMG, U251, GHE, SNB19, U138 and D54) by RT-PCR. In all but one cell line no enhancement of MMP expression by IL-10 was detected. Matrilysin in U373 cells was the only protease found to be upregulated in the presence of IL-10 dependent on cell density. The present data suggest that IL-10 related effects on the invasive properties of the cell lines are not directly mediated by an upregulation of matrix metalloproteinase expression.