Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
170 result(s) for "Huey, Raymond B."
Sort by:
Climate Warming, Resource Availability, and the Metabolic Meltdown of Ectotherms
Climate warming may lower environmental resource levels, growth, and fitness of many ectotherms. In a classic experiment, Brett and colleagues documented that growth rates of salmon depended strikingly on both temperature and food levels. Here we develop a simple bioenergetic model that explores how fixed temperatures and food jointly alter the thermal sensitivity of net energy gain. The model incorporates differing thermal sensitivities of energy intake and metabolism. In qualitative agreement with Brett's results, it predicts that decreased food intake reduces growth rates, lowers optimal temperatures for growth, and lowers the highest temperatures sustaining growth (upper thermal limit). Consequently, ectotherms facing reduced food intake in warm environments should restrict activity to times when low body temperatures are biophysically feasible, but—in a warming world—that will force ectotherms to shorten activity times and thus further reduce food intake. This \"metabolic meltdown\" is a consequence of declining energy intake coupled with accelerating metabolic costs at high temperatures and with warming-imposed restrictions on activity. Next, we extend the model to explore how increasing mean environmental temperatures alter the thermal sensitivity of growth: when food intake is reduced, optimal temperatures and upper thermal limits for growth are lowered. We discuss our model's key assumptions and caveats as well as its relationship to a recent model for phytoplankton. Both models illustrate that the deleterious impacts of climate warming on ectotherms will be amplified if food intake is also reduced, either because warming reduces standing food resources or because it restricts foraging time.
Increase in crop losses to insect pests in a warming climate
Crop responses to climate warming suggest that yields will decrease as growing-season temperatures increase. Deutsch et al. show that this effect may be exacerbated by insect pests (see the Perspective by Riegler). Insects already consume 5 to 20% of major grain crops. The authors' models show that for the three most important grain crops—wheat, rice, and maize—yield lost to insects will increase by 10 to 25% per degree Celsius of warming, hitting hardest in the temperate zone. These findings provide an estimate of further potential climate impacts on global food supply and a benchmark for future regional and field-specific studies of crop-pest-climate interactions. Science , this issue p. 916 ; see also p. 846 Models of insect population growth and metabolism in a warming climate predict losses of major food crops to insect pests. Insect pests substantially reduce yields of three staple grains—rice, maize, and wheat—but models assessing the agricultural impacts of global warming rarely consider crop losses to insects. We use established relationships between temperature and the population growth and metabolic rates of insects to estimate how and where climate warming will augment losses of rice, maize, and wheat to insects. Global yield losses of these grains are projected to increase by 10 to 25% per degree of global mean surface warming. Crop losses will be most acute in areas where warming increases both population growth and metabolic rates of insects. These conditions are centered primarily in temperate regions, where most grain is produced.
Climate change tightens a metabolic constraint on marine habitats
Warming of the oceans and consequent loss of dissolved oxygen (O2) will alter marine ecosystems, but a mechanistic framework to predict the impact of multiple stressors on viable habitat is lacking. Here, we integrate physiological, climatic, and biogeographic data to calibrate and then map a key metabolic index—the ratio of O2 supply to resting metabolic O2 demand—across geographic ranges of several marine ectotherms. These species differ in thermal and hypoxic tolerances, but their contemporary distributions are all bounded at the equatorward edge by a minimum metabolic index of ∼2 to 5, indicative of a critical energetic requirement for organismal activity. The combined effects of warming and O2 loss this century are projected to reduce the upper ocean's metabolic index by ∼20% globally and by ∼50% in northern high-latitude regions, forcing poleward and vertical contraction of metabolically viable habitats and species ranges.
Global metabolic impacts of recent climate warming
Metabolic impacts of climate warming Organisms living at mid- to high latitudes in the Northern Hemisphere have been predicted to be potentially the most affected by climate warming, as that is where temperatures have risen most rapidly. But Michael Dillon and colleagues now turn the spotlight onto the prospects for ectotherms — 'cold blooded' animals that regulate their body temperatures by exchanging heat with their surroundings — living in the tropics. Temperature rise does not have a linear effect on an organism's biology, and estimated warming-induced changes in metabolic rate for tropical ectotherms are found to be larger than, or equivalent in magnitude to, those observed in temperate climates. This work may have profound implications both locally and globally, because the tropics are an important engine of primary productivity and contain a large proportion of the world's biodiversity. Temperature increase does not have a linear effect on an organism's biology. These authors use observed global temperature change to calculate the change in metabolic rate for ectotherms. Despite smaller temperature increases in the tropics, these areas, which contain the largest proportion of biodiversity, are likely to experience just as much change in metabolic rate. Documented shifts in geographical ranges 1 , 2 , seasonal phenology 3 , 4 , community interactions 5 , genetics 3 , 6 and extinctions 7 have been attributed to recent global warming 8 , 9 , 10 . Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere 4 , 9 , 10 —a latitudinal pattern that is expected 4 , 8 , 10 , 11 because warming is fastest in these regions 8 . In contrast, shifts in tropical regions are expected to be less marked 4 , 8 , 10 , 11 because warming is less pronounced there 8 . However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms 12 . Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature’s nonlinear effects on metabolism, tropical organisms, which constitute much of Earth’s biodiversity, should be profoundly affected by recent and projected climate warming 2 , 13 , 14 .
Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation
Physiological thermal-tolerance limits of terrestrial ectotherms often exceed local air temperatures, implying a high degree of thermal safety (an excess of warm or cold thermal tolerance). However, air temperatures can be very different from the equilibrium body temperature of an individual ectotherm. Here, we compile thermal-tolerance limits of ectotherms across a wide range of latitudes and elevations and compare these thermal limits both to air and to operative body temperatures (theoretically equilibrated body temperatures) of small ectothermic animals during the warmest and coldest times of the year. We show that extreme operative body temperatures in exposed habitats match or exceed the physiological thermal limits of most ectotherms. Therefore, contrary to previous findings using air temperatures, most ectotherms do not have a physiological thermal-safety margin. They must therefore rely on behavior to avoid overheating during the warmest times, especially in the lowland tropics. Likewise, species living at temperate latitudes and in alpine habitats must retreat to avoid lethal cold exposure. Behavioral plasticity of habitat use and the energetic consequences of thermal retreats are therefore critical aspects of species' vulnerability to climate warming and extreme events.
Fifty Years of Mountain Passes
In 1967, Dan Janzen published “Why Mountain Passes Are Higher in the Tropics” in The American Naturalist. Janzen’s seminal article has captured the attention of generations of biologists and continues to inspire theoretical and empirical work. The underlying assumptions and derived predictions are broadly synthetic and widely applicable. Consequently, Janzen’s “seasonality hypothesis” has proven relevant to physiology, climate change, ecology, and evolution. To celebrate the fiftieth anniversary of this highly influential article, we highlight the past, present, and future of this work and include a unique historical perspective from Janzen himself.
Evolution caused by extreme events
Extreme events can be a major driver of evolutionary change over geological and contemporary timescales. Outstanding examples are evolutionary diversification following mass extinctions caused by extreme volcanism or asteroid impact. The evolution of organisms in contemporary time is typically viewed as a gradual and incremental process that results from genetic change, environmental perturbation or both. However, contemporary environments occasionally experience strong perturbations such as heat waves, floods, hurricanes, droughts and pest outbreaks. These extreme events set up strong selection pressures on organisms, and are small-scale analogues of the dramatic changes documented in the fossil record. Because extreme events are rare, almost by definition, they are difficult to study. So far most attention has been given to their ecological rather than to their evolutionary consequences. We review several case studies of contemporary evolution in response to two types of extreme environmental perturbations, episodic (pulse) or prolonged (press). Evolution is most likely to occur when extreme events alter community composition. We encourage investigators to be prepared for evolutionary change in response to rare events during long-term field studies. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’.
Why “Suboptimal” Is Optimal: Jensen’s Inequality and Ectotherm Thermal Preferences
Body temperature (T b) profoundly affects the fitness of ectotherms. Many ectotherms use behavior to controlT bwithin narrow levels. These temperatures are assumed to be optimal and therefore to match body temperatures ( \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $T_{r_{\\mathrm{max}\\,}}$ \\end{document} ) that maximize fitness (r). We develop an optimality model and find that optimal body temperature (T o) should not be centered at \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $T_{r_{\\mathrm{max}\\,}}$ \\end{document} but shifted to a lower temperature. This finding seems paradoxical but results from two considerations relating to Jensen’s inequality, which deals with how variance and skew influence integrals of nonlinear functions. First, ectotherms are not perfect thermoregulators and so experience a range ofT b. Second, temperature‐fitness curves are asymmetric, such that aT bhigher than \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $T_{r_{\\mathrm{max}\\,}}$ \\end{document} depresses fitness more than will aT bdisplaced an equivalent amount below \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $T_{r_{\\mathrm{max}\\,}}$ \\end{document} . Our model makes several predictions. The magnitude of the optimal shift ( \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $T_{r_{\\mathrm{max}\\,}}-T_{\\mathrm{o}\\,}$ \\end{document} ) should increase with the degree of asymmetry of temperature‐fitness curves and withT bvariance. Deviations should be relatively large for thermal specialists but insensitive to whether fitness increases with \\documentclass{aastex} \\usepackage{amsbsy} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{bm} \\usepackage{mathrsfs} \\usepackage{pifont} \\usepackage{stmaryrd} \\usepackage{textcomp} \\usepackage{portland,xspace} \\usepackage{amsmath,amsxtra} \\usepackage[OT2,OT1]{fontenc} \\newcommand\\cyr{ \\renewcommand\\rmdefault{wncyr} \\renewcommand\\sfdefault{wncyss} \\renewcommand\\encodingdefault{OT2} \\normalfont \\selectfont} \\DeclareTextFontCommand{\\textcyr}{\\cyr} \\pagestyle{empty} \\DeclareMathSizes{10}{9}{7}{6} \\begin{document} \\landscape $T_{r_{\\mathrm{max}\\,}}$ \\end{document} (“hotter is better”). Asymmetric (left‐skewed)T bdistributions reduce the magnitude of the optimal shift but do not eliminate it. Comparative data (insects, lizards) support key predictions. Thus, “suboptimal” is optimal.
Mountaineers on Mount Everest: Effects of age, sex, experience, and crowding on rates of success and death
Mount Everest is an extreme environment for humans. Nevertheless, hundreds of mountaineers attempt to summit Everest each year. In a previous study we analyzed interview data for all climbers (2,211) making their first attempt on Everest during 1990-2005. Probabilities of summiting were similar for men and women, declined progressively for climbers about 40 and older, but were elevated for climbers with experience climbing in Nepal. Probabilities of dying were also similar for men and women, increased for climbers about 60 and older (especially for the few that had summited), and were independent of experience. Since 2005, many more climbers (3,620) have attempted Everest. Here our primary goal is to quantify recent patterns of success and death and to evaluate changes over time. Also, we investigate whether patterns relate to key socio-demographic covariates (age, sex, host country, prior experience). Recent climbers were more diverse both in gender (women = 14.6% vs. 9.1% for 1990-2005) and in age (climbers [greater than or equal to] 40 = 54.1% vs. 38.7%). Strikingly, recent climbers of both sexes were almost twice as likely to summit-and slightly less likely to die-than were comparable climbers in the previous survey. Temporal shifts may reflect improved weather forecasting, installation of fixed ropes on much of the route, and accumulative logistic equipment and experience. We add two new analyses. The probability of dying from illness or non-traumas (e.g., high-altitude illness, hypothermia), relative to dying from falling or from 'objective hazards' (avalanche, rock or ice fall), increased marginally with age. Recent crowding during summit bids was four-fold greater than in the prior sample, but surprisingly crowding has no evident effect on success or death during summit bids. Our results inform prospective climbers as to their current odds of success and of death, as well as inform governments of Nepal and China of the safety consequences and economic impacts of periodically debated restrictions based on climber age and experience.
Impacts of climate warming on terrestrial ectotherms across latitude
The impact of anthropogenic climate change on terrestrial organisms is often predicted to increase with latitude, in parallel with the rate of warming. Yet the biological impact of rising temperatures also depends on the physiological sensitivity of organisms to temperature change. We integrate empirical fitness curves describing the thermal tolerance of terrestrial insects from around the world with the projected geographic distribution of climate change for the next century to estimate the direct impact of warming on insect fitness across latitude. The results show that warming in the tropics, although relatively small in magnitude, is likely to have the most deleterious consequences because tropical insects are relatively sensitive to temperature change and are currently living very close to their optimal temperature. In contrast, species at higher latitudes have broader thermal tolerance and are living in climates that are currently cooler than their physiological optima, so that warming may even enhance their fitness. Available thermal tolerance data for several vertebrate taxa exhibit similar patterns, suggesting that these results are general for terrestrial ectotherms. Our analyses imply that, in the absence of ameliorating factors such as migration and adaptation, the greatest extinction risks from global warming may be in the tropics, where biological diversity is also greatest.