Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
99 result(s) for "Hughes, Terry P"
Sort by:
Long-term shifts in the colony size structure of coral populations along the Great Barrier Reef
The age or size structure of a population has a marked influence on its demography and reproductive capacity. While declines in coral cover are well documented, concomitant shifts in the size-frequency distribution of coral colonies are rarely measured at large spatial scales. Here, we document major shifts in the colony size structure of coral populations along the 2300 km length of the Great Barrier Reef relative to historical baselines (1995/1996). Coral colony abundances on reef crests and slopes have declined sharply across all colony size classes and in all coral taxa compared to historical baselines. Declines were particularly pronounced in the northern and central regions of the Great Barrier Reef, following mass coral bleaching in 2016 and 2017. The relative abundances of large colonies remained relatively stable, but this apparent stability masks steep declines in absolute abundance. The potential for recovery of older fecund corals is uncertain given the increasing frequency and intensity of disturbance events. The systematic decline in smaller colonies across regions, habitats and taxa, suggests that a decline in recruitment has further eroded the recovery potential and resilience of coral populations.
Global warming transforms coral reef assemblages
Global warming is rapidly emerging as a universal threat to ecological integrity and function, highlighting the urgent need for a better understanding of the impact of heat exposure on the resilience of ecosystems and the people who depend on them 1 . Here we show that in the aftermath of the record-breaking marine heatwave on the Great Barrier Reef in 2016 2 , corals began to die immediately on reefs where the accumulated heat exposure exceeded a critical threshold of degree heating weeks, which was 3–4 °C-weeks. After eight months, an exposure of 6 °C-weeks or more drove an unprecedented, regional-scale shift in the composition of coral assemblages, reflecting markedly divergent responses to heat stress by different taxa. Fast-growing staghorn and tabular corals suffered a catastrophic die-off, transforming the three-dimensionality and ecological functioning of 29% of the 3,863 reefs comprising the world’s largest coral reef system. Our study bridges the gap between the theory and practice of assessing the risk of ecosystem collapse, under the emerging framework for the International Union for Conservation of Nature (IUCN) Red List of Ecosystems 3 , by rigorously defining both the initial and collapsed states, identifying the major driver of change, and establishing quantitative collapse thresholds. The increasing prevalence of post-bleaching mass mortality of corals represents a radical shift in the disturbance regimes of tropical reefs, both adding to and far exceeding the influence of recurrent cyclones and other local pulse events, presenting a fundamental challenge to the long-term future of these iconic ecosystems. Acute heat stress from the extended marine heatwave of 2016 is a potent driver of the transformation of coral assemblages, which affects even the most remote and well-protected reefs of the Great Barrier Reef.
Deficits in functional trait diversity following recovery on coral reefs
The disturbance regimes of ecosystems are changing, and prospects for continued recovery remain unclear. New assemblages with altered species composition may be deficient in key functional traits. Alternatively, important traits may be sustained by species that replace those in decline (response diversity). Here, we quantify the recovery and response diversity of coral assemblages using case studies of disturbance in three locations. Despite return trajectories of coral cover, the original assemblages with diverse functional attributes failed to recover at each location. Response diversity and the reassembly of trait space was limited, and varied according to biogeographic differences in the attributes of dominant, rapidly recovering species. The deficits in recovering assemblages identified here suggest that the return of coral cover cannot assure the reassembly of reef trait diversity, and that shortening intervals between disturbances can limit recovery among functionally important species.
Spatial and temporal patterns of mass bleaching of corals in the Anthropocene
Coral bleaching occurs when stressful conditions result in the expulsion of the algal partner from the coral. Before anthropogenic climate warming, such events were relatively rare, allowing for recovery of the reef between events. Hughes et al. looked at 100 reefs globally and found that the average interval between bleaching events is now less than half what it was before. Such narrow recovery windows do not allow for full recovery. Furthermore, warming events such as El Niño are warmer than previously, as are general ocean conditions. Such changes are likely to make it more and more difficult for reefs to recover between stressful events. Science , this issue p. 80 Coral reefs in the present day have less time than in earlier periods to recover from bleaching events. Tropical reef systems are transitioning to a new era in which the interval between recurrent bouts of coral bleaching is too short for a full recovery of mature assemblages. We analyzed bleaching records at 100 globally distributed reef locations from 1980 to 2016. The median return time between pairs of severe bleaching events has diminished steadily since 1980 and is now only 6 years. As global warming has progressed, tropical sea surface temperatures are warmer now during current La Niña conditions than they were during El Niño events three decades ago. Consequently, as we transition to the Anthropocene, coral bleaching is occurring more frequently in all El Niño–Southern Oscillation phases, increasing the likelihood of annual bleaching in the coming decades.
Building adaptive capacity to climate change in tropical coastal communities
To minimize the impacts of climate change on human wellbeing, governments, development agencies, and civil society organizations have made substantial investments in improving people’s capacity to adapt to change. Yet to date, these investments have tended to focus on a very narrow understanding of adaptive capacity. Here, we propose an approach to build adaptive capacity across five domains: the assets that people can draw upon in times of need; the flexibility to change strategies; the ability to organize and act collectively; learning to recognize and respond to change; and the agency to determine whether to change or not.
Global warming impairs stock–recruitment dynamics of corals
Changes in disturbance regimes due to climate change are increasingly challenging the capacity of ecosystems to absorb recurrent shocks and reassemble afterwards, escalating the risk of widespread ecological collapse of current ecosystems and the emergence of novel assemblages 1 – 3 . In marine systems, the production of larvae and recruitment of functionally important species are fundamental processes for rebuilding depleted adult populations, maintaining resilience and avoiding regime shifts in the face of rising environmental pressures 4 , 5 . Here we document a regional-scale shift in stock–recruitment relationships of corals along the Great Barrier Reef—the world’s largest coral reef system—following unprecedented back-to-back mass bleaching events caused by global warming. As a consequence of mass mortality of adult brood stock in 2016 and 2017 owing to heat stress 6 , the amount of larval recruitment declined in 2018 by 89% compared to historical levels. For the first time, brooding pocilloporids replaced spawning acroporids as the dominant taxon in the depleted recruitment pool. The collapse in stock–recruitment relationships indicates that the low resistance of adult brood stocks to repeated episodes of coral bleaching is inexorably tied to an impaired capacity for recovery, which highlights the multifaceted processes that underlie the global decline of coral reefs. The extent to which the Great Barrier Reef will be able to recover from the collapse in stock–recruitment relationships remains uncertain, given the projected increased frequency of extreme climate events over the next two decades 7 . A regional-scale shift in the relationships between adult stock and recruitment of corals occurred along the Great Barrier Reef, following mass bleaching events in 2016 and 2017 caused by global warming.
Ecological memory modifies the cumulative impact of recurrent climate extremes
Climate change is radically altering the frequency, intensity and spatial scale of severe weather events, such as heatwaves, droughts, floods and fires1. As the time interval shrinks between recurrent shocks2–5, the responses of ecosystems to each new disturbance are increasingly likely to be contingent on the history of other recent extreme events. Ecological memory—defined as the ability of the past to influence the present trajectory of ecosystems6,7—is also critically important for understanding how species assemblages are responding to rapid changes in disturbance regimes due to anthropogenic climate change2,3,6–8. Here, we show the emergence of ecological memory during unprecedented back-to-back mass bleaching of corals along the 2,300 km length of the Great Barrier Reef in 2016, and again in 2017, whereby the impacts of the second severe heatwave, and its geographic footprint, were contingent on the first. Our results underscore the need to understand the strengthening interactions among sequences of climate-driven events, and highlight the accelerating and cumulative impacts of novel disturbance regimes on vulnerable ecosystems.
Navigating the transition to ecosystem-based management of the Great Barrier Reef, Australia
We analyze the strategies and actions that enable transitions toward ecosystem-based management using the recent governance changes of the Great Barrier Reef Marine Park as a case study. The interplay among individual actors, organizations, and institutions at multiple levels is central in such transitions. A flexible organization, the Great Barrier Reef Marine Park Authority, was crucial in initiating the transition to ecosystem-based management. This agency was also instrumental in the subsequent transformation of the governance regime and provided leadership throughout the process. Strategies involved internal reorganization and management innovation, leading to an ability to coordinate the scientific community, to increase public awareness of environmental issues and problems, to involve a broader set of stakeholders, and to maneuver the political system for support at critical times. The transformation process was induced by increased pressure on the Great Barrier Reef (from terrestrial runoff, overharvesting, and global warming) that triggered a new sense of urgency to address these challenges. The focus of governance shifted from protection of selected individual reefs to stewardship of the larger-scale seascape. The study emphasizes the significance of stewardship that can change patterns of interactions among key actors and allow for new forms of management and governance to emerge in response to environmental change. This example illustrates that enabling legislations or other social bounds are essential, but not sufficient for shifting governance toward adaptive comanagement of complex marine ecosystems.
Securing a just space for small-scale fisheries in the blue economy
The vast developmental opportunities offered by the world’s coasts and oceans have attracted the attention of governments, private enterprises, philanthropic organizations, and international conservation organizations. High-profile dialogue and policy decisions on the future of the ocean are informed largely by economic and ecological research. Key insights from the social sciences raise concerns for food and nutrition security, livelihoods and social justice, but these have yet to gain traction with investors and the policy discourse on transforming ocean governance. The largest group of ocean-users – women and men who service, fish and trade from small-scale fisheries (SSF) – argue that they have been marginalized from the dialogue between international environmental and economic actors that is determining strategies for the future of the ocean. Blue Economy or Blue Growth initiatives see the ocean as the new economic frontier and imply an alignment with social objectives and SSF concerns. Deeper analysis reveals fundamental differences in ideologies, priorities and approaches. We argue that SSF are being subtly and overtly squeezed for geographic, political and economic space by larger scale economic and environmental conservation interests, jeopardizing the substantial benefits SSF provide through the livelihoods of millions of women and men, for the food security of around four billion consumers globally, and in the developing world, as a key source of micro-nutrients and protein for over a billion low-income consumers. Here, we bring insights from social science and SSF to explore how ocean governance might better account for social dimensions of fisheries.
Managing resilience to reverse phase shifts in coral reefs
Both coral-dominated and degraded reef ecosystems can be resistant to change. Typically, research and management have focused on maintaining coral dominance and avoiding phase shifts to other species compositions, rather than on weakening the resilience of already degraded reefs to re-establish coral dominance. Reversing degraded coral-reef states will involve reducing local chronic drivers like fishing pressure and poor water quality. Reversals will also require management of key ecological processes - such as those performed by different functional groups of marine herbivores - that both weaken the resilience of the degraded state and strengthen the coral-dominated state. If detrimental human impacts are reduced and key ecological processes are enhanced, pulse disturbances, such as extreme weather events, and ecological variability may provide opportunities for a return to a coral-dominated state. Critically, achieving these outcomes will necessitate a diverse range of integrated approaches to alter human interactions with reef ecosystems.