Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
12
result(s) for
"Hung, Pei-Shi"
Sort by:
miR-146a Enhances the Oncogenicity of Oral Carcinoma by Concomitant Targeting of the IRAK1, TRAF6 and NUMB Genes
by
Yang, Cheng-Chieh
,
Chang, Kuo-Wei
,
Chou, Chung-Shan
in
3' Untranslated Regions
,
Animal tissues
,
Base Pairing
2013
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients' plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3'UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.
Journal Article
miR-146a Enhances the Oncogenicity of Oral Carcinoma by Concomitant Targeting of the IRAK1, TRAF6 and NUMB Genes: e79926
2013
MicroRNAs are short non-coding RNAs that regulate gene expression and are crucial to tumorigenesis. Oral squamous cell carcinoma (OSCC) is a prevalent malignancy worldwide. Up-regulation of miR-146 has been identified in OSCC tissues. However, the roles of miR-146 in carcinogenesis are controversial as it is suppressive in many other malignancies. The present study investigated the pathogenic implications of miR-146a in oral carcinogenesis. Microdissected OSCC exhibits higher levels of miR-146a expression than matched adjacent mucosal cells. The plasma miR-146a levels of patients are significantly higher than those of control subjects; these levels decrease drastically after tumor resection. miR-146a levels in tumors and in patients' plasma can be used to classify OSCC and non-disease status (sensitivity: >0.72). Exogenous miR-146a expression is significantly increased in vitro oncogenic phenotypes as well as during xenograft tumorigenesis and OSCC metastasis. The plasma miR-146a levels of these mice parallel the xenograft tumor burdens of the mice. A miR-146a blocker abrogates the growth of xenograft tumors. miR-146a oncogenic activity is associated with down-regulation of IRAK1, TRAF6 and NUMB expression. Furthermore, miR-146a directly targets the 3'UTR of NUMB and a region within the NUMB coding sequence when suppressing NUMB expression. Exogenous NUMB expression attenuates OSCC oncogenicity. Double knockdown of IRAK1 and TRAF6, and of TRAF6 and NUMB, enhance the oncogenic phenotypes of OSCC cells. Oncogenic enhancement modulated by miR-146a expression is attenuated by exogenous IRAK1 or NUMB expression. This study shows that miR-146a expression contributes to oral carcinogenesis by targeting the IRAK1, TRAF6 and NUMB genes.
Journal Article
A murine model of post-acute neurological sequelae following SARS-CoV-2 variant infection
by
Kulkarni, Vikram V.
,
Jiang, Wei
,
Zou, Jing
in
Angiotensin-Converting Enzyme 2 - genetics
,
Angiotensin-Converting Enzyme 2 - metabolism
,
Animal models
2024
Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. In the brain, no detectable viral RNA and minimal residential immune cell activation was observed in the surviving mice post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and gene expression levels associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent systemic T helper 1 prone cellular immune responses and strong sera neutralizing antibodies against Delta and Omicron variants months post-acute infection. Overall, our findings suggest that infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long-COVID patients and provides new insights into the role of systemic and brain residential immune factors in PASC pathogenesis.
Journal Article
Peli1 signaling blockade attenuates congenital zika syndrome
2020
Zika virus (ZIKV) infects pregnant women and causes devastating congenital zika syndrome (CZS). How the virus is vertically transmitted to the fetus and induces neuronal loss remains unclear. We previously reported that Pellino (Peli)1, an E3 ubiquitin ligase, promotes p38MAPK activation in microglia and induction of lethal encephalitis by facilitating the replication of West Nile virus (WNV), a closely related flavivirus. Here, we found that Peli1 expression was induced on ZIKV-infected human monocytic cells, peripheral blood mononuclear cells, human first-trimester placental trophoblasts, and neural stem cell (hNSC)s. Peli1 mediates ZIKV cell attachment, entry and viral translation and its expression is confined to the endoplasmic reticulum. Moreover, Peli1 mediated inflammatory cytokine and chemokine responses and induced cell death in placental trophoblasts and hNSCs. ZIKV-infected pregnant mice lacking Peli1 signaling had reduced placental inflammation and tissue damage, which resulted in attenuated congenital abnormalities. Smaducin-6, a membrane-tethered Smad6-derived peptide, blocked Peli1-mediated NF-κB activation but did not have direct effects on ZIKV infection. Smaducin-6 reduced inflammatory responses and cell death in placental trophoblasts and hNSCs, and diminished placental inflammation and damage, leading to attenuated congenital malformations in mice. Collectively, our results reveal a novel role of Peli1 in flavivirus pathogenesis and suggest that Peli1 promotes ZIKV vertical transmission and neuronal loss by mediating inflammatory cytokine responses and induction of cell death. Our results also identify Smaducin-6 as a potential therapeutic candidate for treatment of CZS.
Journal Article
Peli1 facilitates virus replication and promotes neuroinflammation during West Nile virus infection
by
Tang, Shao-Jun
,
Winkelmann, Evandro R.
,
Zhu, Shuang
in
Biomedical research
,
Brain
,
Cell activation
2018
The E3 ubiquitin ligase Pellino 1 (Peli1) is a microglia-specific mediator of autoimmune encephalomyelitis. Its role in neurotropic flavivirus infection is largely unknown. Here, we report that mice deficient in Peli1 (Peli1-/-) were more resistant to lethal West Nile virus (WNV) infection and exhibited reduced viral loads in tissues and attenuated brain inflammation. Peli1 mediates chemokine and proinflammatory cytokine production in microglia and promotes T cell and macrophage infiltration into the CNS. Unexpectedly, Peli1 was required for WNV entry and replication in mouse macrophages and mouse and human neurons and microglia. It was also highly expressed on WNV-infected neurons and adjacent inflammatory cells from postmortem patients who died of acute WNV encephalitis. WNV passaged in Peli1-/- macrophages or neurons induced a lower viral load and impaired activation in WT microglia and thereby reduced lethality in mice. Smaducin-6, which blocks interactions between Peli1 and IRAK1, RIP1, and IKKε, did not inhibit WNV-triggered microglia activation. Collectively, our findings suggest a nonimmune regulatory role for Peli1 in promoting microglia activation during WNV infection and identify a potentially novel host factor for flavivirus cell entry and replication.
Journal Article
Oral Supplementation with AHCC®, a Standardized Extract of Cultured Lentinula edodes Mycelia, Enhances Host Resistance against SARS-CoV-2 Infection
2023
The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted global public health safety and the economy. Multiple antiviral drugs have been developed, and some have received regulatory approval and/or authorization. The use of nutraceuticals can be beneficial for preventing and treating COVID-19 complications. AHCC is a standardized, cultured extract of an edible mushroom Lentinula edodes of the Basidiomycete family of fungi that is enriched in acylated α-1,4-glucans. Here, we evaluated the effects of the oral administration of AHCC on the host response to SARS-CoV-2 infection in two murine models, K18-hACE2 transgenic mice and immunocompetent BALB/c mice. Oral administration of AHCC every other day for one week before and one day post SARS-CoV-2 infection in both strains of mice decreased the viral load and attenuated inflammation in the lungs. AHCC treatment also significantly reduced SARS-CoV-2-induced lethality in the K18-hACE2 mice. AHCC administration enhanced the expansion of γδ T cells in the spleen and lungs before and after viral infection and promoted T helper 1-prone mucosal and systemic T cell responses in both models. In AHCC-fed BALB/c mice, SARS-CoV-2 specific IgG responses were also enhanced. In summary, AHCC supplementation enhances host resistance against mild and severe COVID-19 infection primarily via the promotion of innate and adaptive T cell immune responses in mice.
Journal Article
Maximizing Channel Capacity of 3D MIMO System via Antenna Downtilt Angle Adaptation Using a Q-Learning Algorithm
2022
3D MIMO introduces the vertical dimension of the antenna downtilt angle to make the direction of signal transmission more accurate to improve system capacity. In this paper, we verify the effect of antenna downtilt angle on channel capacity through simulations of four fixed antenna downtilt angles, 90, 96, 99, and 102 degrees under the conditions that the distance between mobile station (MS) and base station (BS) is 250 m, and the heights of antenna in BS and MS are 25 m and 1.5 m, respectively. The simulation results show that the antenna downtilt angle of 96 degrees has a larger channel capacity than the others. In addition, we proposed an adaptive optimization method by applying the Q-learning algorithm to adaptively optimize the antenna downtilt angles to maximize system capacity. The performance of the proposed method is to investigate the Q-learning algorithm with three different discount rates at 0.9, 0.5, and 0.1, and four different propagation distances on 20 × 1 and 60 × 4 MIMO. We demonstrate that there is only a 1% difference between the adaptively optimized antenna downtilt angle and the ideal optimal antenna downtilt angle when the discount rate of Q-learning algorithm is 0.9, and its channel capacity performance can reach more than 99.72% of the ideal optimal one.
Journal Article
A Murine Model of Post-acute Neurological Sequelae Following SARS-CoV-2 Variant Infection
by
Awadalkareem Adam
,
Jiang, Wei
,
Bi-Hung, Peng
in
Animal models
,
Ataxia telangiectasia
,
Cognitive ability
2024
Viral variant is one known risk factor associated with post-acute sequelae of COVID-19 (PASC), yet the pathogenesis is largely unknown. Here, we studied SARS-CoV-2 Delta variant-induced PASC in K18-hACE2 mice. The virus replicated productively, induced robust inflammatory responses in lung and brain tissues, and caused weight loss and mortality during the acute infection. Longitudinal behavior studies in surviving mice up to 4 months post-acute infection revealed persistent abnormalities in neuropsychiatric state and motor behaviors, while reflex and sensory functions recovered over time. Surviving mice showed no detectable viral RNA in the brain and minimal neuroinflammation post-acute infection. Transcriptome analysis revealed persistent activation of immune pathways, including humoral responses, complement, and phagocytosis, and reduced levels of genes associated with ataxia telangiectasia, impaired cognitive function and memory recall, and neuronal dysfunction and degeneration. Furthermore, surviving mice maintained potent T helper 1 prone cellular immune responses and high neutralizing antibodies against Delta and Omicron variants in the periphery for months post-acute infection. Overall, infection in K18-hACE2 mice recapitulates the persistent clinical symptoms reported in long COVID patients and may be useful for future assessment of the efficacy of vaccines and therapeutics against SARS-CoV-2 variants.Competing Interest StatementThe authors have declared no competing interest.