Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
255 result(s) for "Hunt, Andrew P."
Sort by:
The maximum evaporative potential of constant wear immersion suits influences the risk of excessive heat strain for helicopter aircrew
The heat exchange properties of aircrew clothing including a Constant Wear Immersion Suit (CWIS), and the environmental conditions in which heat strain would impair operational performance, were investigated. The maximum evaporative potential (im/clo) of six clothing ensembles (three with a flight suit (FLY) and three with a CWIS) of varying undergarment layers were measured with a heated sweating manikin. Biophysical modelling estimated the environmental conditions in which body core temperature would elevate above 38.0°C during routine flight. The im/clo was reduced with additional undergarment layers, and was more restricted in CWIS compared to FLY ensembles. A significant linear relationship (r2 = 0.98, P<0.001) was observed between im/clo and the highest wet-bulb globe temperature in which the flight scenario could be completed without body core temperature exceeding 38.0°C. These findings provide a valuable tool for clothing manufacturers and mission planners for the development and selection of CWIS's for aircrew.
A Systematic Review of Post-Work Core Temperature Cooling Rates Conferred by Passive Rest
Physical work increases energy expenditure, requiring a considerable elevation of metabolic rate, which causes body heat production that can cause heat stress, heat strain, and hyperthermia in the absence of adequate cooling. Given that passive rest is often used for cooling, a systematic search of literature databases was conducted to identify studies that reported post-work core temperature cooling rates conferred by passive rest, across a range of environmental conditions. Data regarding cooling rates and environmental conditions were extracted, and the validity of key measures was assessed for each study. Forty-four eligible studies were included, providing 50 datasets. Eight datasets indicated a stable or rising core temperature in participants (range 0.000 to +0.028 °C min−1), and forty-two datasets reported reducing core temperature (−0.002 to −0.070 °C min−1) during passive rest, across a range of Wet-Bulb Globe Temperatures (WBGT). For 13 datasets where occupational or similarly insulative clothing was worn, passive rest resulted in a mean core temperature decrease of −0.004 °C min−1 (−0.032 to +0.013 °C min−1). These findings indicate passive rest does not reverse the elevated core temperatures of heat-exposed workers in a timely manner. Climate projections of higher WBGT are anticipated to further marginalise the passive rest cooling rates of heat-exposed workers, particularly when undertaken in occupational attire.
Heat Strain Decision Aid (HSDA) accurately predicts individual-based core body temperature rise while wearing chemical protective clothing
We examined the accuracy of the Heat Strain Decision Aid (HSDA) as a predictor of core body temperature in healthy individuals wearing chemical protective clothing during laboratory and field exercises in hot and humid conditions. The laboratory experiment examined three chemical protective clothing ensembles in eight male volunteers (age 24 ± 6 years; height 178 ± 5 cm; body mass 76.6 ± 8.4 kg) during intermittent treadmill marching in an environmental chamber (air temperature 29.3 ± 0.1 °C; relative humidity 56 ± 1%; wind speed 0.4 ± 0.1 m s−1). The field experiment examined four different chemical protective clothing ensembles in twenty activity military volunteers (26 ± 5 years; 175 ± 8 cm; 80.2 ± 12.1 kg) during a prolonged road march (26.0 ± 0.5 °C; 55 ± 3%; 4.3 ± 0.7 m s−1). Predictive accuracy and precision were evaluated by the bias, mean absolute error (MAE), and root mean square error (RMSE). Additionally, accuracy was evaluated using a prediction bias of ±0.27 °C as an acceptable limit and by comparing predictions to observations within the standard deviation (SD) of the observed data. Core body temperature predictions were accurate for each chemical protective clothing ensemble in laboratory (Bias −0.10 ± 0.36 °C; MAE 0.28 ± 0.24 °C; RMSE 0.37 ± 0.24 °C) and field experiments (Bias 0.23 ± 0.32 °C; MAE 0.30 ± 0.25 °C; RMSE 0.40 ± 0.25 °C). From all modeled data, 72% of all predictions were within one standard deviation of the observed data including 92% of predictions for the laboratory experiment (SD ± 0.64 °C) and 67% for the field experiment (SD ± 0.38 °C). Individual-based predictions showed modest errors outside the SD range with 98% of predictions falling <1 °C; while, 81% of all errors were within 0.5 °C of observed data. The HSDA acceptably predicts core body temperature when wearing chemical protective clothing during laboratory and field exercises in hot and humid conditions. •Summarizes accuracy of the Heat Strain Decision Aid (HSDA) for predicting core body temperature.•Demonstrates acceptable accuracy of HSDA for predicting core body temperature for young healthy individuals.•Outlines predictive accuracy of HSDA to be within an acceptable bias criteria used in direct measure methods (±0.27 °C).
Passive heating and glycaemic control in non-diabetic and diabetic individuals: A systematic review and meta-analysis
Passive heating (PH) has begun to gain research attention as an alternative therapy for cardio-metabolic diseases. Whether PH improves glycaemic control in diabetic and non-diabetic individuals is unknown. This study aims to review and conduct a meta-analysis of published literature relating to PH and glycaemic control. Electronic data sources, PubMed, Embase and Web of Science from inception to July 2018 were searched for randomised controlled trials (RCT) studying the effect of PH on glycaemic control in diabetic or non-diabetic individuals. To measure the treatment effect, standardised mean differences (SMD) with 95% confidence intervals (CI) were calculated. Fourteen articles were included in the meta-analysis. Following a glucose load, glucose concentration was greater during PH in non-diabetic (SMD 0.75, 95% CI 1.02 to 0.48, P < 0.001) and diabetic individuals (SMD 0.27, 95% CI 0.52 to 0.02, P = 0.030). In non-diabetic individuals, glycaemic control did not differ between PH and control only (SMD 0.11, 95% CI 0.44 to -0.22, P > 0.050) and a glucose challenge given within 24 hours post-heating (SMD 0.30, 95% CI 0.62 to -0.02, P > 0.050). PH preceded by a glucose load results in acute glucose intolerance in non-diabetic and diabetic individuals. However, heating a non-diabetic individual without a glucose load appears not to affect glycaemic control. Likewise, a glucose challenge given within 24 hours of a single-bout of heating does not affect glucose tolerance in non-diabetic individuals. Despite the promise PH may hold, no short-term benefit to glucose tolerance is observed in non-diabetic individuals. More research is needed to elucidate whether this alternative therapy benefits diabetic individuals.
Climate Change Effects on the Predicted Heat Strain and Labour Capacity of Outdoor Workers in Australia
Global heating is subjecting more of the planet to longer periods of higher heat stress categories commonly employed to determine safe work durations. This study compared predicted worker heat strain and labour capacity for a recent normal climate (1986–2005) and under commonly applied climate scenarios for the 2041–2080 period for selected Australian locations. Recently published heat indices for northern (Darwin, Townsville, and Tom Price) and south-eastern coastal and inland Australia locations (Griffith, Port Macquarie, and Clare) under four projected climate scenarios, comprising two representative concentration pathways (RCPs), RCP4.5 and RCP8.5, and two time periods, 2041–2060 and 2061–2080, were used. Safe work durations, before the threshold for core temperature (38.0 °C) or sweat loss (5% body mass) are attained, were then estimated for each scenario using the predicted heat strain model (ISO7933). The modelled time to threshold core temperature varied with location, climate scenario, and metabolic rate. Relative to the baseline (1986–2005), safe work durations (labour capacity) were reduced by >50% in Port Macquarie and Griffith and by 20–50% in northern Australia. Reaching the sweat loss limit restricted safe work durations in Clare and Griffith. Projected future climatic conditions will adversely impact the predicted heat strain and labour capacity of outdoor workers in Australia. Risk management strategies must adapt to warming conditions to protect outdoor workers from the deleterious effects of heat.
Validity of a noninvasive estimation of deep body temperature when wearing personal protective equipment during exercise and recovery
Background Deep body temperature is a critical indicator of heat strain. However, direct measures are often invasive, costly, and difficult to implement in the field. This study assessed the agreement between deep body temperature estimated from heart rate and that measured directly during repeated work bouts while wearing explosive ordnance disposal (EOD) protective clothing and during recovery. Methods Eight males completed three work and recovery periods across two separate days. Work consisted of treadmill walking on a 1% incline at 2.5, 4.0, or 5.5 km/h, in a random order, wearing EOD protective clothing. Ambient temperature and relative humidity were maintained at 24 °C and 50% [Wet bulb globe temperature (WBGT) (20.9 ± 1.2) °C] or 32 °C and 60% [WBGT (29.0 ± 0.2) °C] on the separate days, respectively. Heart rate and gastrointestinal temperature (T GI ) were monitored continuously, and deep body temperature was also estimated from heart rate (ECTemp). Results The overall systematic bias between T GI and ECTemp was 0.01 °C with 95% limits of agreement (LoA) of ±0.64 °C and a root mean square error of 0.32 °C. The average error statistics among participants showed no significant differences in error between the exercise and recovery periods or the environmental conditions. At T GI levels of (37.0–37.5) °C, (37.5–38.0) °C, (38.0–38.5) °C, and > 38.5 °C, the systematic bias and ± 95% LoA were (0.08 ± 0.58) °C, (− 0.02 ± 0.69) °C, (− 0.07 ± 0.63) °C, and (− 0.32 ± 0.56) °C, respectively. Conclusions The findings demonstrate acceptable validity of the ECTemp up to 38.5 °C. Conducting work within an ECTemp limit of 38.4 °C, in conditions similar to the present study, would protect the majority of personnel from an excessive elevation in deep body temperature (> 39.0 °C).
Evidence of heat sensitivity in people with Parkinson’s disease
Examining how heat affects people with Parkinson’s disease is essential for informing clinical decision-making, safety, well-being, and healthcare planning. While there is evidence that the neuropathology associated with Parkinson’s disease affects thermoregulatory mechanisms, little attention has been given to the association of heat sensitivity to worsening symptoms and restricted daily activities in people with this progressive disease. Using a cross-sectional study design, we examined the experiences of people diagnosed with Parkinson’s disease in the heat. Two-hundred and forty-seven people completed an online survey (age: 66.0 ± 9.2 years; sex: male = 102 (41.3%), female = 145 (58.7%)), of which 195 (78.9%) reported becoming more sensitive to heat with Parkinson’s disease. Motor and nonmotor symptoms worsened with heat in 182 (73.7%) and 203 (82.2%) respondents, respectively. The most commonly reported symptoms to worsen included walking difficulties, balance impairment, stiffness, tremor, fatigue, sleep disturbances, excess sweating, difficulty concentrating, and light-headedness when standing. Concerningly, over half indicated an inability to work effectively in the heat, and nearly half reported that heat impacted their ability to perform household tasks and social activities. Overall, heat sensitivity was common in people with Parkinson’s disease and had a significant impact on symptomology, day-to-day activities and quality of life.
Monitoring heat strain: the effect of sensor type and location on single-site and mean skin temperature during work in the heat
PurposeElevations in skin temperature and heat strain reduce tolerance to work in the heat. This study assessed agreement between mean (eight sites) and single-site skin temperature, measured by a conductive or infrared sensor, during exercise in the heat.MethodsTwelve males (age: 24.2 ± 3.7 years; height: 180 ± 6.5 cm; body mass: 82.9 ± 9.5 kg; body fat: 16.0 ± 6.5%) volunteered to participate in two trials. Thirty minutes of seated rest was followed by 60 min of treadmill walking (4.5 km·h−1, 1%) inside an environmental chamber (35.5 ± 0.2 °C dry bulb, 50.7 ± 2.5% relative humidity) wearing either an athletic (ATH: t-shirt, shorts, shoes) or a chemical protective ensemble (CPE: ATH plus coverall and respirator). Skin temperature was measured on the axilla with a conductive sensor (Tsk-C) and an infrared sensor (Tsk-I) and compared to mean skin temperature (T¯sk, 8-site conductive sensors). Rectal temperature and heart rate were measured and used to calculate the adaptive physiological strain index (aPSI).ResultsSkin temperature on the chest, scapula, and thigh showed acceptable agreement with T¯sk (mean difference < 0.5 °C and limits of agreement ± 1.0 °C) in both ATH and CPE. Skin temperature on the axilla overestimated T¯sk in ATH (Tsk-C: 1.5 ± 0.8 °C; Tsk-I: 2.2 ± 1.2 °C) and CPE (Tsk-C: 1.1 ± 0.9 °C; Tsk-I: 1.8 ± 1.1 °C). Significant differences (p < 0.001) were observed in aPSI using Tsk-I (ATH: 5.7 ± 1.0, CPE: 8.3 ± 1.1) and Tsk-C (ATH: 5.4 ± 1.0, CPE 7.8 ± 1.0) compared to T¯sk (ATH: 5.2 ± 1.0, CPE: 7.4 ± 1.0).ConclusionThe overestimate of mean skin temperature had a significant influence on the aPSI, which has important implications for real-time monitoring and risk management of personnel working in hot environments.
Negligible heat strain in armored vehicle officers wearing personal body armor
Objectives This study evaluated the heat strain experienced by armored vehicle officers (AVOs) wearing personal body armor (PBA) in a sub-tropical climate. Methods Twelve male AVOs, aged 35-58 years, undertook an eight hour shift while wearing PBA. Heart rate and core temperature were monitored continuously. Urine specific gravity (USG) was measured before and after, and with any urination during the shift. Results Heart rate indicated an intermittent and low-intensity nature of the work. USG revealed six AVOs were dehydrated from pre through post shift, and two others became dehydrated. Core temperature averaged 37.4 ± 0.3°C, with maximum's of 37.7 ± 0.2°C. Conclusions Despite increased age, body mass, and poor hydration practices, and Wet-Bulb Globe Temperatures in excess of 30°C; the intermittent nature and low intensity of the work prevented excessive heat strain from developing.
Reversing nitrogen fixation
The nitrogen cycle is one of the most important biogeochemical cycles on Earth because nitrogen is an essential nutrient for all life forms. To supplement natural nitrogen fixation, farmers add large amounts of nitrogen-containing fertilizer to their soils such that nitrogen never becomes a limiting nutrient for plant growth. However, of the nitrogen added to fields — most of which is in the form of NH 3 and NO 3 − — only 30–50% is taken up by plants, while the remainder is metabolized by soil microorganisms in processes with detrimental environmental impacts. The first of these processes, that is, nitrification, refers to the biological oxidation of NH 3 to NO 2 − and NO 3 − , which have low retention in soil and pollute waterways, leading to downstream eutrophication and ultimately ‘dead zones’ (low oxygen zones) in coastal waters, for example, the Gulf of Mexico. In a second process, namely, denitrification, NO 3 − and NO 2 − undergo stepwise reduction to N 2 O and N 2 . Substantial amounts of the N 2 O produced in this process escape into the atmosphere, contributing to climate change and ozone destruction. Recent results suggest that nitrification also affords N 2 O. This Review describes the enzymes involved in NH 3 oxidation and N 2 O production and degradation in the nitrogen cycle. We pay particular attention to the active site structures, the associated coordination chemistry that enables the chemical transformations and the reaction mechanisms. Nitrification and denitrification are responsible for the processing of ammonia fertilizer, ultimately leading to the generation of environmental pollutants that accumulate in waterways and the atmosphere. This Review describes the enzymes involved in these processes, which fascinate with their unusual active sites and the surprising reactions that they catalyse.